Step |
Hyp |
Ref |
Expression |
1 |
|
pntibnd.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
2 |
|
pntibndlem1.1 |
|- ( ph -> A e. RR+ ) |
3 |
|
pntibndlem1.l |
|- L = ( ( 1 / 4 ) / ( A + 3 ) ) |
4 |
|
4nn |
|- 4 e. NN |
5 |
|
nnrp |
|- ( 4 e. NN -> 4 e. RR+ ) |
6 |
|
rpreccl |
|- ( 4 e. RR+ -> ( 1 / 4 ) e. RR+ ) |
7 |
4 5 6
|
mp2b |
|- ( 1 / 4 ) e. RR+ |
8 |
|
3rp |
|- 3 e. RR+ |
9 |
|
rpaddcl |
|- ( ( A e. RR+ /\ 3 e. RR+ ) -> ( A + 3 ) e. RR+ ) |
10 |
2 8 9
|
sylancl |
|- ( ph -> ( A + 3 ) e. RR+ ) |
11 |
|
rpdivcl |
|- ( ( ( 1 / 4 ) e. RR+ /\ ( A + 3 ) e. RR+ ) -> ( ( 1 / 4 ) / ( A + 3 ) ) e. RR+ ) |
12 |
7 10 11
|
sylancr |
|- ( ph -> ( ( 1 / 4 ) / ( A + 3 ) ) e. RR+ ) |
13 |
3 12
|
eqeltrid |
|- ( ph -> L e. RR+ ) |
14 |
13
|
rpred |
|- ( ph -> L e. RR ) |
15 |
13
|
rpgt0d |
|- ( ph -> 0 < L ) |
16 |
|
rpcn |
|- ( ( 1 / 4 ) e. RR+ -> ( 1 / 4 ) e. CC ) |
17 |
7 16
|
ax-mp |
|- ( 1 / 4 ) e. CC |
18 |
17
|
div1i |
|- ( ( 1 / 4 ) / 1 ) = ( 1 / 4 ) |
19 |
|
rpre |
|- ( ( 1 / 4 ) e. RR+ -> ( 1 / 4 ) e. RR ) |
20 |
7 19
|
mp1i |
|- ( ph -> ( 1 / 4 ) e. RR ) |
21 |
|
3re |
|- 3 e. RR |
22 |
21
|
a1i |
|- ( ph -> 3 e. RR ) |
23 |
10
|
rpred |
|- ( ph -> ( A + 3 ) e. RR ) |
24 |
|
1lt4 |
|- 1 < 4 |
25 |
|
4re |
|- 4 e. RR |
26 |
|
4pos |
|- 0 < 4 |
27 |
|
recgt1 |
|- ( ( 4 e. RR /\ 0 < 4 ) -> ( 1 < 4 <-> ( 1 / 4 ) < 1 ) ) |
28 |
25 26 27
|
mp2an |
|- ( 1 < 4 <-> ( 1 / 4 ) < 1 ) |
29 |
24 28
|
mpbi |
|- ( 1 / 4 ) < 1 |
30 |
|
1lt3 |
|- 1 < 3 |
31 |
7 19
|
ax-mp |
|- ( 1 / 4 ) e. RR |
32 |
|
1re |
|- 1 e. RR |
33 |
31 32 21
|
lttri |
|- ( ( ( 1 / 4 ) < 1 /\ 1 < 3 ) -> ( 1 / 4 ) < 3 ) |
34 |
29 30 33
|
mp2an |
|- ( 1 / 4 ) < 3 |
35 |
34
|
a1i |
|- ( ph -> ( 1 / 4 ) < 3 ) |
36 |
|
ltaddrp |
|- ( ( 3 e. RR /\ A e. RR+ ) -> 3 < ( 3 + A ) ) |
37 |
21 2 36
|
sylancr |
|- ( ph -> 3 < ( 3 + A ) ) |
38 |
|
3cn |
|- 3 e. CC |
39 |
2
|
rpcnd |
|- ( ph -> A e. CC ) |
40 |
|
addcom |
|- ( ( 3 e. CC /\ A e. CC ) -> ( 3 + A ) = ( A + 3 ) ) |
41 |
38 39 40
|
sylancr |
|- ( ph -> ( 3 + A ) = ( A + 3 ) ) |
42 |
37 41
|
breqtrd |
|- ( ph -> 3 < ( A + 3 ) ) |
43 |
20 22 23 35 42
|
lttrd |
|- ( ph -> ( 1 / 4 ) < ( A + 3 ) ) |
44 |
18 43
|
eqbrtrid |
|- ( ph -> ( ( 1 / 4 ) / 1 ) < ( A + 3 ) ) |
45 |
32
|
a1i |
|- ( ph -> 1 e. RR ) |
46 |
|
0lt1 |
|- 0 < 1 |
47 |
46
|
a1i |
|- ( ph -> 0 < 1 ) |
48 |
10
|
rpregt0d |
|- ( ph -> ( ( A + 3 ) e. RR /\ 0 < ( A + 3 ) ) ) |
49 |
|
ltdiv23 |
|- ( ( ( 1 / 4 ) e. RR /\ ( 1 e. RR /\ 0 < 1 ) /\ ( ( A + 3 ) e. RR /\ 0 < ( A + 3 ) ) ) -> ( ( ( 1 / 4 ) / 1 ) < ( A + 3 ) <-> ( ( 1 / 4 ) / ( A + 3 ) ) < 1 ) ) |
50 |
20 45 47 48 49
|
syl121anc |
|- ( ph -> ( ( ( 1 / 4 ) / 1 ) < ( A + 3 ) <-> ( ( 1 / 4 ) / ( A + 3 ) ) < 1 ) ) |
51 |
44 50
|
mpbid |
|- ( ph -> ( ( 1 / 4 ) / ( A + 3 ) ) < 1 ) |
52 |
3 51
|
eqbrtrid |
|- ( ph -> L < 1 ) |
53 |
|
0xr |
|- 0 e. RR* |
54 |
|
1xr |
|- 1 e. RR* |
55 |
|
elioo2 |
|- ( ( 0 e. RR* /\ 1 e. RR* ) -> ( L e. ( 0 (,) 1 ) <-> ( L e. RR /\ 0 < L /\ L < 1 ) ) ) |
56 |
53 54 55
|
mp2an |
|- ( L e. ( 0 (,) 1 ) <-> ( L e. RR /\ 0 < L /\ L < 1 ) ) |
57 |
14 15 52 56
|
syl3anbrc |
|- ( ph -> L e. ( 0 (,) 1 ) ) |