Step |
Hyp |
Ref |
Expression |
1 |
|
pntibnd.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
2 |
|
pntibndlem1.1 |
|- ( ph -> A e. RR+ ) |
3 |
|
pntibndlem1.l |
|- L = ( ( 1 / 4 ) / ( A + 3 ) ) |
4 |
|
pntibndlem3.2 |
|- ( ph -> A. x e. RR+ ( abs ` ( ( R ` x ) / x ) ) <_ A ) |
5 |
|
pntibndlem3.3 |
|- ( ph -> B e. RR+ ) |
6 |
|
pntibndlem3.k |
|- K = ( exp ` ( B / ( E / 2 ) ) ) |
7 |
|
pntibndlem3.c |
|- C = ( ( 2 x. B ) + ( log ` 2 ) ) |
8 |
|
pntibndlem3.4 |
|- ( ph -> E e. ( 0 (,) 1 ) ) |
9 |
|
pntibndlem3.6 |
|- ( ph -> Z e. RR+ ) |
10 |
|
pntibndlem2.10 |
|- ( ph -> N e. NN ) |
11 |
|
pntibndlem2.5 |
|- ( ph -> T e. RR+ ) |
12 |
|
pntibndlem2.6 |
|- ( ph -> A. x e. ( 1 (,) +oo ) A. y e. ( x [,] ( 2 x. x ) ) ( ( psi ` y ) - ( psi ` x ) ) <_ ( ( 2 x. ( y - x ) ) + ( T x. ( x / ( log ` x ) ) ) ) ) |
13 |
|
pntibndlem2.7 |
|- X = ( ( exp ` ( T / ( E / 4 ) ) ) + Z ) |
14 |
|
pntibndlem2.8 |
|- ( ph -> M e. ( ( exp ` ( C / E ) ) [,) +oo ) ) |
15 |
|
pntibndlem2.9 |
|- ( ph -> Y e. ( X (,) +oo ) ) |
16 |
|
pntibndlem2.11 |
|- ( ph -> ( ( Y < N /\ N <_ ( ( M / 2 ) x. Y ) ) /\ ( abs ` ( ( R ` N ) / N ) ) <_ ( E / 2 ) ) ) |
17 |
10
|
nnrpd |
|- ( ph -> N e. RR+ ) |
18 |
16
|
simpld |
|- ( ph -> ( Y < N /\ N <_ ( ( M / 2 ) x. Y ) ) ) |
19 |
18
|
simpld |
|- ( ph -> Y < N ) |
20 |
|
1red |
|- ( ph -> 1 e. RR ) |
21 |
|
ioossre |
|- ( 0 (,) 1 ) C_ RR |
22 |
1 2 3
|
pntibndlem1 |
|- ( ph -> L e. ( 0 (,) 1 ) ) |
23 |
21 22
|
sselid |
|- ( ph -> L e. RR ) |
24 |
21 8
|
sselid |
|- ( ph -> E e. RR ) |
25 |
23 24
|
remulcld |
|- ( ph -> ( L x. E ) e. RR ) |
26 |
20 25
|
readdcld |
|- ( ph -> ( 1 + ( L x. E ) ) e. RR ) |
27 |
10
|
nnred |
|- ( ph -> N e. RR ) |
28 |
26 27
|
remulcld |
|- ( ph -> ( ( 1 + ( L x. E ) ) x. N ) e. RR ) |
29 |
|
2re |
|- 2 e. RR |
30 |
|
remulcl |
|- ( ( 2 e. RR /\ N e. RR ) -> ( 2 x. N ) e. RR ) |
31 |
29 27 30
|
sylancr |
|- ( ph -> ( 2 x. N ) e. RR ) |
32 |
5
|
rpred |
|- ( ph -> B e. RR ) |
33 |
|
remulcl |
|- ( ( 2 e. RR /\ B e. RR ) -> ( 2 x. B ) e. RR ) |
34 |
29 32 33
|
sylancr |
|- ( ph -> ( 2 x. B ) e. RR ) |
35 |
|
2rp |
|- 2 e. RR+ |
36 |
35
|
a1i |
|- ( ph -> 2 e. RR+ ) |
37 |
36
|
relogcld |
|- ( ph -> ( log ` 2 ) e. RR ) |
38 |
34 37
|
readdcld |
|- ( ph -> ( ( 2 x. B ) + ( log ` 2 ) ) e. RR ) |
39 |
7 38
|
eqeltrid |
|- ( ph -> C e. RR ) |
40 |
|
eliooord |
|- ( E e. ( 0 (,) 1 ) -> ( 0 < E /\ E < 1 ) ) |
41 |
8 40
|
syl |
|- ( ph -> ( 0 < E /\ E < 1 ) ) |
42 |
41
|
simpld |
|- ( ph -> 0 < E ) |
43 |
24 42
|
elrpd |
|- ( ph -> E e. RR+ ) |
44 |
39 43
|
rerpdivcld |
|- ( ph -> ( C / E ) e. RR ) |
45 |
44
|
reefcld |
|- ( ph -> ( exp ` ( C / E ) ) e. RR ) |
46 |
|
pnfxr |
|- +oo e. RR* |
47 |
|
icossre |
|- ( ( ( exp ` ( C / E ) ) e. RR /\ +oo e. RR* ) -> ( ( exp ` ( C / E ) ) [,) +oo ) C_ RR ) |
48 |
45 46 47
|
sylancl |
|- ( ph -> ( ( exp ` ( C / E ) ) [,) +oo ) C_ RR ) |
49 |
48 14
|
sseldd |
|- ( ph -> M e. RR ) |
50 |
|
ioossre |
|- ( X (,) +oo ) C_ RR |
51 |
50 15
|
sselid |
|- ( ph -> Y e. RR ) |
52 |
49 51
|
remulcld |
|- ( ph -> ( M x. Y ) e. RR ) |
53 |
29
|
a1i |
|- ( ph -> 2 e. RR ) |
54 |
|
eliooord |
|- ( L e. ( 0 (,) 1 ) -> ( 0 < L /\ L < 1 ) ) |
55 |
22 54
|
syl |
|- ( ph -> ( 0 < L /\ L < 1 ) ) |
56 |
55
|
simpld |
|- ( ph -> 0 < L ) |
57 |
23 56
|
elrpd |
|- ( ph -> L e. RR+ ) |
58 |
57
|
rpge0d |
|- ( ph -> 0 <_ L ) |
59 |
55
|
simprd |
|- ( ph -> L < 1 ) |
60 |
43
|
rpge0d |
|- ( ph -> 0 <_ E ) |
61 |
41
|
simprd |
|- ( ph -> E < 1 ) |
62 |
23 20 24 20 58 59 60 61
|
ltmul12ad |
|- ( ph -> ( L x. E ) < ( 1 x. 1 ) ) |
63 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
64 |
62 63
|
breqtrdi |
|- ( ph -> ( L x. E ) < 1 ) |
65 |
25 20 20 64
|
ltadd2dd |
|- ( ph -> ( 1 + ( L x. E ) ) < ( 1 + 1 ) ) |
66 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
67 |
65 66
|
breqtrrdi |
|- ( ph -> ( 1 + ( L x. E ) ) < 2 ) |
68 |
26 53 17 67
|
ltmul1dd |
|- ( ph -> ( ( 1 + ( L x. E ) ) x. N ) < ( 2 x. N ) ) |
69 |
18
|
simprd |
|- ( ph -> N <_ ( ( M / 2 ) x. Y ) ) |
70 |
49
|
recnd |
|- ( ph -> M e. CC ) |
71 |
51
|
recnd |
|- ( ph -> Y e. CC ) |
72 |
|
rpcnne0 |
|- ( 2 e. RR+ -> ( 2 e. CC /\ 2 =/= 0 ) ) |
73 |
35 72
|
mp1i |
|- ( ph -> ( 2 e. CC /\ 2 =/= 0 ) ) |
74 |
|
div23 |
|- ( ( M e. CC /\ Y e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( M x. Y ) / 2 ) = ( ( M / 2 ) x. Y ) ) |
75 |
70 71 73 74
|
syl3anc |
|- ( ph -> ( ( M x. Y ) / 2 ) = ( ( M / 2 ) x. Y ) ) |
76 |
69 75
|
breqtrrd |
|- ( ph -> N <_ ( ( M x. Y ) / 2 ) ) |
77 |
27 52 36
|
lemuldiv2d |
|- ( ph -> ( ( 2 x. N ) <_ ( M x. Y ) <-> N <_ ( ( M x. Y ) / 2 ) ) ) |
78 |
76 77
|
mpbird |
|- ( ph -> ( 2 x. N ) <_ ( M x. Y ) ) |
79 |
28 31 52 68 78
|
ltletrd |
|- ( ph -> ( ( 1 + ( L x. E ) ) x. N ) < ( M x. Y ) ) |
80 |
1 2 3 4 5 6 7 8 2 10
|
pntibndlem2a |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( u e. RR /\ N <_ u /\ u <_ ( ( 1 + ( L x. E ) ) x. N ) ) ) |
81 |
80
|
simp1d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> u e. RR ) |
82 |
17
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> N e. RR+ ) |
83 |
80
|
simp2d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> N <_ u ) |
84 |
81 82 83
|
rpgecld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> u e. RR+ ) |
85 |
1
|
pntrf |
|- R : RR+ --> RR |
86 |
85
|
ffvelrni |
|- ( u e. RR+ -> ( R ` u ) e. RR ) |
87 |
84 86
|
syl |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( R ` u ) e. RR ) |
88 |
87 84
|
rerpdivcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( R ` u ) / u ) e. RR ) |
89 |
88
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( R ` u ) / u ) e. CC ) |
90 |
89
|
abscld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( R ` u ) / u ) ) e. RR ) |
91 |
85
|
ffvelrni |
|- ( N e. RR+ -> ( R ` N ) e. RR ) |
92 |
17 91
|
syl |
|- ( ph -> ( R ` N ) e. RR ) |
93 |
92 10
|
nndivred |
|- ( ph -> ( ( R ` N ) / N ) e. RR ) |
94 |
93
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( R ` N ) / N ) e. RR ) |
95 |
94
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( R ` N ) / N ) e. CC ) |
96 |
89 95
|
subcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( R ` u ) / u ) - ( ( R ` N ) / N ) ) e. CC ) |
97 |
96
|
abscld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( ( R ` u ) / u ) - ( ( R ` N ) / N ) ) ) e. RR ) |
98 |
95
|
abscld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( R ` N ) / N ) ) e. RR ) |
99 |
97 98
|
readdcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( abs ` ( ( ( R ` u ) / u ) - ( ( R ` N ) / N ) ) ) + ( abs ` ( ( R ` N ) / N ) ) ) e. RR ) |
100 |
24
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> E e. RR ) |
101 |
89 95
|
abs2difd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( abs ` ( ( R ` u ) / u ) ) - ( abs ` ( ( R ` N ) / N ) ) ) <_ ( abs ` ( ( ( R ` u ) / u ) - ( ( R ` N ) / N ) ) ) ) |
102 |
90 98 97
|
lesubaddd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( abs ` ( ( R ` u ) / u ) ) - ( abs ` ( ( R ` N ) / N ) ) ) <_ ( abs ` ( ( ( R ` u ) / u ) - ( ( R ` N ) / N ) ) ) <-> ( abs ` ( ( R ` u ) / u ) ) <_ ( ( abs ` ( ( ( R ` u ) / u ) - ( ( R ` N ) / N ) ) ) + ( abs ` ( ( R ` N ) / N ) ) ) ) ) |
103 |
101 102
|
mpbid |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( R ` u ) / u ) ) <_ ( ( abs ` ( ( ( R ` u ) / u ) - ( ( R ` N ) / N ) ) ) + ( abs ` ( ( R ` N ) / N ) ) ) ) |
104 |
100
|
rehalfcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( E / 2 ) e. RR ) |
105 |
27
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> N e. RR ) |
106 |
81 105
|
resubcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( u - N ) e. RR ) |
107 |
106 82
|
rerpdivcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( u - N ) / N ) e. RR ) |
108 |
|
3re |
|- 3 e. RR |
109 |
108
|
a1i |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> 3 e. RR ) |
110 |
90 109
|
readdcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) e. RR ) |
111 |
107 110
|
remulcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) ) e. RR ) |
112 |
11
|
rpred |
|- ( ph -> T e. RR ) |
113 |
112
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> T e. RR ) |
114 |
|
1red |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> 1 e. RR ) |
115 |
|
4nn |
|- 4 e. NN |
116 |
|
nnrp |
|- ( 4 e. NN -> 4 e. RR+ ) |
117 |
115 116
|
mp1i |
|- ( ph -> 4 e. RR+ ) |
118 |
43 117
|
rpdivcld |
|- ( ph -> ( E / 4 ) e. RR+ ) |
119 |
11 118
|
rpdivcld |
|- ( ph -> ( T / ( E / 4 ) ) e. RR+ ) |
120 |
119
|
rpred |
|- ( ph -> ( T / ( E / 4 ) ) e. RR ) |
121 |
120
|
reefcld |
|- ( ph -> ( exp ` ( T / ( E / 4 ) ) ) e. RR ) |
122 |
121
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( exp ` ( T / ( E / 4 ) ) ) e. RR ) |
123 |
|
efgt1 |
|- ( ( T / ( E / 4 ) ) e. RR+ -> 1 < ( exp ` ( T / ( E / 4 ) ) ) ) |
124 |
119 123
|
syl |
|- ( ph -> 1 < ( exp ` ( T / ( E / 4 ) ) ) ) |
125 |
124
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> 1 < ( exp ` ( T / ( E / 4 ) ) ) ) |
126 |
9
|
rpred |
|- ( ph -> Z e. RR ) |
127 |
121 126
|
readdcld |
|- ( ph -> ( ( exp ` ( T / ( E / 4 ) ) ) + Z ) e. RR ) |
128 |
13 127
|
eqeltrid |
|- ( ph -> X e. RR ) |
129 |
121 9
|
ltaddrpd |
|- ( ph -> ( exp ` ( T / ( E / 4 ) ) ) < ( ( exp ` ( T / ( E / 4 ) ) ) + Z ) ) |
130 |
129 13
|
breqtrrdi |
|- ( ph -> ( exp ` ( T / ( E / 4 ) ) ) < X ) |
131 |
|
eliooord |
|- ( Y e. ( X (,) +oo ) -> ( X < Y /\ Y < +oo ) ) |
132 |
15 131
|
syl |
|- ( ph -> ( X < Y /\ Y < +oo ) ) |
133 |
132
|
simpld |
|- ( ph -> X < Y ) |
134 |
121 128 51 130 133
|
lttrd |
|- ( ph -> ( exp ` ( T / ( E / 4 ) ) ) < Y ) |
135 |
121 51 27 134 19
|
lttrd |
|- ( ph -> ( exp ` ( T / ( E / 4 ) ) ) < N ) |
136 |
135
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( exp ` ( T / ( E / 4 ) ) ) < N ) |
137 |
114 122 105 125 136
|
lttrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> 1 < N ) |
138 |
105 137
|
rplogcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( log ` N ) e. RR+ ) |
139 |
113 138
|
rerpdivcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( T / ( log ` N ) ) e. RR ) |
140 |
111 139
|
readdcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) ) + ( T / ( log ` N ) ) ) e. RR ) |
141 |
|
peano2re |
|- ( ( abs ` ( ( R ` u ) / u ) ) e. RR -> ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) e. RR ) |
142 |
90 141
|
syl |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) e. RR ) |
143 |
107 142
|
remulcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) e. RR ) |
144 |
|
chpcl |
|- ( u e. RR -> ( psi ` u ) e. RR ) |
145 |
81 144
|
syl |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( psi ` u ) e. RR ) |
146 |
|
chpcl |
|- ( N e. RR -> ( psi ` N ) e. RR ) |
147 |
105 146
|
syl |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( psi ` N ) e. RR ) |
148 |
145 147
|
resubcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( psi ` u ) - ( psi ` N ) ) e. RR ) |
149 |
148 82
|
rerpdivcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( psi ` u ) - ( psi ` N ) ) / N ) e. RR ) |
150 |
143 149
|
readdcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) + ( ( ( psi ` u ) - ( psi ` N ) ) / N ) ) e. RR ) |
151 |
107 90
|
remulcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) e. RR ) |
152 |
92
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( R ` N ) e. RR ) |
153 |
87 152
|
resubcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( R ` u ) - ( R ` N ) ) e. RR ) |
154 |
153
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( R ` u ) - ( R ` N ) ) e. CC ) |
155 |
154
|
abscld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( R ` u ) - ( R ` N ) ) ) e. RR ) |
156 |
155 82
|
rerpdivcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( abs ` ( ( R ` u ) - ( R ` N ) ) ) / N ) e. RR ) |
157 |
151 156
|
readdcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) + ( ( abs ` ( ( R ` u ) - ( R ` N ) ) ) / N ) ) e. RR ) |
158 |
107 88
|
remulcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) e. RR ) |
159 |
158
|
renegcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> -u ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) e. RR ) |
160 |
159
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> -u ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) e. CC ) |
161 |
153 82
|
rerpdivcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( R ` u ) - ( R ` N ) ) / N ) e. RR ) |
162 |
161
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( R ` u ) - ( R ` N ) ) / N ) e. CC ) |
163 |
160 162
|
abstrid |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( -u ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) + ( ( ( R ` u ) - ( R ` N ) ) / N ) ) ) <_ ( ( abs ` -u ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) ) + ( abs ` ( ( ( R ` u ) - ( R ` N ) ) / N ) ) ) ) |
164 |
81
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> u e. CC ) |
165 |
105
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> N e. CC ) |
166 |
82
|
rpne0d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> N =/= 0 ) |
167 |
164 165 165 166
|
divsubdird |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( u - N ) / N ) = ( ( u / N ) - ( N / N ) ) ) |
168 |
165 166
|
dividd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( N / N ) = 1 ) |
169 |
168
|
oveq2d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( u / N ) - ( N / N ) ) = ( ( u / N ) - 1 ) ) |
170 |
167 169
|
eqtrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( u - N ) / N ) = ( ( u / N ) - 1 ) ) |
171 |
170
|
oveq1d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) = ( ( ( u / N ) - 1 ) x. ( ( R ` u ) / u ) ) ) |
172 |
81 82
|
rerpdivcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( u / N ) e. RR ) |
173 |
172
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( u / N ) e. CC ) |
174 |
|
1cnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> 1 e. CC ) |
175 |
173 174 89
|
subdird |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u / N ) - 1 ) x. ( ( R ` u ) / u ) ) = ( ( ( u / N ) x. ( ( R ` u ) / u ) ) - ( 1 x. ( ( R ` u ) / u ) ) ) ) |
176 |
84
|
rpcnne0d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( u e. CC /\ u =/= 0 ) ) |
177 |
82
|
rpcnne0d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( N e. CC /\ N =/= 0 ) ) |
178 |
87
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( R ` u ) e. CC ) |
179 |
|
dmdcan |
|- ( ( ( u e. CC /\ u =/= 0 ) /\ ( N e. CC /\ N =/= 0 ) /\ ( R ` u ) e. CC ) -> ( ( u / N ) x. ( ( R ` u ) / u ) ) = ( ( R ` u ) / N ) ) |
180 |
176 177 178 179
|
syl3anc |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( u / N ) x. ( ( R ` u ) / u ) ) = ( ( R ` u ) / N ) ) |
181 |
89
|
mulid2d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( 1 x. ( ( R ` u ) / u ) ) = ( ( R ` u ) / u ) ) |
182 |
180 181
|
oveq12d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u / N ) x. ( ( R ` u ) / u ) ) - ( 1 x. ( ( R ` u ) / u ) ) ) = ( ( ( R ` u ) / N ) - ( ( R ` u ) / u ) ) ) |
183 |
171 175 182
|
3eqtrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) = ( ( ( R ` u ) / N ) - ( ( R ` u ) / u ) ) ) |
184 |
183
|
negeqd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> -u ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) = -u ( ( ( R ` u ) / N ) - ( ( R ` u ) / u ) ) ) |
185 |
87 82
|
rerpdivcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( R ` u ) / N ) e. RR ) |
186 |
185
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( R ` u ) / N ) e. CC ) |
187 |
186 89
|
negsubdi2d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> -u ( ( ( R ` u ) / N ) - ( ( R ` u ) / u ) ) = ( ( ( R ` u ) / u ) - ( ( R ` u ) / N ) ) ) |
188 |
184 187
|
eqtrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> -u ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) = ( ( ( R ` u ) / u ) - ( ( R ` u ) / N ) ) ) |
189 |
152
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( R ` N ) e. CC ) |
190 |
178 189 165 166
|
divsubdird |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( R ` u ) - ( R ` N ) ) / N ) = ( ( ( R ` u ) / N ) - ( ( R ` N ) / N ) ) ) |
191 |
188 190
|
oveq12d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( -u ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) + ( ( ( R ` u ) - ( R ` N ) ) / N ) ) = ( ( ( ( R ` u ) / u ) - ( ( R ` u ) / N ) ) + ( ( ( R ` u ) / N ) - ( ( R ` N ) / N ) ) ) ) |
192 |
89 186 95
|
npncand |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( R ` u ) / u ) - ( ( R ` u ) / N ) ) + ( ( ( R ` u ) / N ) - ( ( R ` N ) / N ) ) ) = ( ( ( R ` u ) / u ) - ( ( R ` N ) / N ) ) ) |
193 |
191 192
|
eqtrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( -u ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) + ( ( ( R ` u ) - ( R ` N ) ) / N ) ) = ( ( ( R ` u ) / u ) - ( ( R ` N ) / N ) ) ) |
194 |
193
|
fveq2d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( -u ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) + ( ( ( R ` u ) - ( R ` N ) ) / N ) ) ) = ( abs ` ( ( ( R ` u ) / u ) - ( ( R ` N ) / N ) ) ) ) |
195 |
158
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) e. CC ) |
196 |
195
|
absnegd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` -u ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) ) = ( abs ` ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) ) ) |
197 |
107
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( u - N ) / N ) e. CC ) |
198 |
197 89
|
absmuld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) ) = ( ( abs ` ( ( u - N ) / N ) ) x. ( abs ` ( ( R ` u ) / u ) ) ) ) |
199 |
81 105
|
subge0d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( 0 <_ ( u - N ) <-> N <_ u ) ) |
200 |
83 199
|
mpbird |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> 0 <_ ( u - N ) ) |
201 |
106 82 200
|
divge0d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> 0 <_ ( ( u - N ) / N ) ) |
202 |
107 201
|
absidd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( u - N ) / N ) ) = ( ( u - N ) / N ) ) |
203 |
202
|
oveq1d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( abs ` ( ( u - N ) / N ) ) x. ( abs ` ( ( R ` u ) / u ) ) ) = ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) ) |
204 |
196 198 203
|
3eqtrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` -u ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) ) = ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) ) |
205 |
154 165 166
|
absdivd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( ( R ` u ) - ( R ` N ) ) / N ) ) = ( ( abs ` ( ( R ` u ) - ( R ` N ) ) ) / ( abs ` N ) ) ) |
206 |
82
|
rprege0d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( N e. RR /\ 0 <_ N ) ) |
207 |
|
absid |
|- ( ( N e. RR /\ 0 <_ N ) -> ( abs ` N ) = N ) |
208 |
206 207
|
syl |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` N ) = N ) |
209 |
208
|
oveq2d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( abs ` ( ( R ` u ) - ( R ` N ) ) ) / ( abs ` N ) ) = ( ( abs ` ( ( R ` u ) - ( R ` N ) ) ) / N ) ) |
210 |
205 209
|
eqtrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( ( R ` u ) - ( R ` N ) ) / N ) ) = ( ( abs ` ( ( R ` u ) - ( R ` N ) ) ) / N ) ) |
211 |
204 210
|
oveq12d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( abs ` -u ( ( ( u - N ) / N ) x. ( ( R ` u ) / u ) ) ) + ( abs ` ( ( ( R ` u ) - ( R ` N ) ) / N ) ) ) = ( ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) + ( ( abs ` ( ( R ` u ) - ( R ` N ) ) ) / N ) ) ) |
212 |
163 194 211
|
3brtr3d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( ( R ` u ) / u ) - ( ( R ` N ) / N ) ) ) <_ ( ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) + ( ( abs ` ( ( R ` u ) - ( R ` N ) ) ) / N ) ) ) |
213 |
106 148
|
readdcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( u - N ) + ( ( psi ` u ) - ( psi ` N ) ) ) e. RR ) |
214 |
213 82
|
rerpdivcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) + ( ( psi ` u ) - ( psi ` N ) ) ) / N ) e. RR ) |
215 |
148
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( psi ` u ) - ( psi ` N ) ) e. CC ) |
216 |
165 164
|
subcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( N - u ) e. CC ) |
217 |
215 216
|
abstrid |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( ( psi ` u ) - ( psi ` N ) ) + ( N - u ) ) ) <_ ( ( abs ` ( ( psi ` u ) - ( psi ` N ) ) ) + ( abs ` ( N - u ) ) ) ) |
218 |
1
|
pntrval |
|- ( u e. RR+ -> ( R ` u ) = ( ( psi ` u ) - u ) ) |
219 |
84 218
|
syl |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( R ` u ) = ( ( psi ` u ) - u ) ) |
220 |
1
|
pntrval |
|- ( N e. RR+ -> ( R ` N ) = ( ( psi ` N ) - N ) ) |
221 |
82 220
|
syl |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( R ` N ) = ( ( psi ` N ) - N ) ) |
222 |
219 221
|
oveq12d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( R ` u ) - ( R ` N ) ) = ( ( ( psi ` u ) - u ) - ( ( psi ` N ) - N ) ) ) |
223 |
145
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( psi ` u ) e. CC ) |
224 |
147
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( psi ` N ) e. CC ) |
225 |
|
subadd4 |
|- ( ( ( ( psi ` u ) e. CC /\ ( psi ` N ) e. CC ) /\ ( u e. CC /\ N e. CC ) ) -> ( ( ( psi ` u ) - ( psi ` N ) ) - ( u - N ) ) = ( ( ( psi ` u ) + N ) - ( ( psi ` N ) + u ) ) ) |
226 |
|
sub4 |
|- ( ( ( ( psi ` u ) e. CC /\ ( psi ` N ) e. CC ) /\ ( u e. CC /\ N e. CC ) ) -> ( ( ( psi ` u ) - ( psi ` N ) ) - ( u - N ) ) = ( ( ( psi ` u ) - u ) - ( ( psi ` N ) - N ) ) ) |
227 |
|
addsub4 |
|- ( ( ( ( psi ` u ) e. CC /\ N e. CC ) /\ ( ( psi ` N ) e. CC /\ u e. CC ) ) -> ( ( ( psi ` u ) + N ) - ( ( psi ` N ) + u ) ) = ( ( ( psi ` u ) - ( psi ` N ) ) + ( N - u ) ) ) |
228 |
227
|
an42s |
|- ( ( ( ( psi ` u ) e. CC /\ ( psi ` N ) e. CC ) /\ ( u e. CC /\ N e. CC ) ) -> ( ( ( psi ` u ) + N ) - ( ( psi ` N ) + u ) ) = ( ( ( psi ` u ) - ( psi ` N ) ) + ( N - u ) ) ) |
229 |
225 226 228
|
3eqtr3d |
|- ( ( ( ( psi ` u ) e. CC /\ ( psi ` N ) e. CC ) /\ ( u e. CC /\ N e. CC ) ) -> ( ( ( psi ` u ) - u ) - ( ( psi ` N ) - N ) ) = ( ( ( psi ` u ) - ( psi ` N ) ) + ( N - u ) ) ) |
230 |
223 224 164 165 229
|
syl22anc |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( psi ` u ) - u ) - ( ( psi ` N ) - N ) ) = ( ( ( psi ` u ) - ( psi ` N ) ) + ( N - u ) ) ) |
231 |
222 230
|
eqtr2d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( psi ` u ) - ( psi ` N ) ) + ( N - u ) ) = ( ( R ` u ) - ( R ` N ) ) ) |
232 |
231
|
fveq2d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( ( psi ` u ) - ( psi ` N ) ) + ( N - u ) ) ) = ( abs ` ( ( R ` u ) - ( R ` N ) ) ) ) |
233 |
106
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( u - N ) e. CC ) |
234 |
|
chpwordi |
|- ( ( N e. RR /\ u e. RR /\ N <_ u ) -> ( psi ` N ) <_ ( psi ` u ) ) |
235 |
105 81 83 234
|
syl3anc |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( psi ` N ) <_ ( psi ` u ) ) |
236 |
147 145 235
|
abssubge0d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( psi ` u ) - ( psi ` N ) ) ) = ( ( psi ` u ) - ( psi ` N ) ) ) |
237 |
105 81 83
|
abssuble0d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( N - u ) ) = ( u - N ) ) |
238 |
236 237
|
oveq12d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( abs ` ( ( psi ` u ) - ( psi ` N ) ) ) + ( abs ` ( N - u ) ) ) = ( ( ( psi ` u ) - ( psi ` N ) ) + ( u - N ) ) ) |
239 |
215 233 238
|
comraddd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( abs ` ( ( psi ` u ) - ( psi ` N ) ) ) + ( abs ` ( N - u ) ) ) = ( ( u - N ) + ( ( psi ` u ) - ( psi ` N ) ) ) ) |
240 |
217 232 239
|
3brtr3d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( R ` u ) - ( R ` N ) ) ) <_ ( ( u - N ) + ( ( psi ` u ) - ( psi ` N ) ) ) ) |
241 |
155 213 82 240
|
lediv1dd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( abs ` ( ( R ` u ) - ( R ` N ) ) ) / N ) <_ ( ( ( u - N ) + ( ( psi ` u ) - ( psi ` N ) ) ) / N ) ) |
242 |
156 214 151 241
|
leadd2dd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) + ( ( abs ` ( ( R ` u ) - ( R ` N ) ) ) / N ) ) <_ ( ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) + ( ( ( u - N ) + ( ( psi ` u ) - ( psi ` N ) ) ) / N ) ) ) |
243 |
151
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) e. CC ) |
244 |
149
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( psi ` u ) - ( psi ` N ) ) / N ) e. CC ) |
245 |
243 197 244
|
addassd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) + ( ( u - N ) / N ) ) + ( ( ( psi ` u ) - ( psi ` N ) ) / N ) ) = ( ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) + ( ( ( u - N ) / N ) + ( ( ( psi ` u ) - ( psi ` N ) ) / N ) ) ) ) |
246 |
90
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( R ` u ) / u ) ) e. CC ) |
247 |
197 246 174
|
adddid |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) = ( ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) + ( ( ( u - N ) / N ) x. 1 ) ) ) |
248 |
197
|
mulid1d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) x. 1 ) = ( ( u - N ) / N ) ) |
249 |
248
|
oveq2d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) + ( ( ( u - N ) / N ) x. 1 ) ) = ( ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) + ( ( u - N ) / N ) ) ) |
250 |
247 249
|
eqtrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) = ( ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) + ( ( u - N ) / N ) ) ) |
251 |
250
|
oveq1d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) + ( ( ( psi ` u ) - ( psi ` N ) ) / N ) ) = ( ( ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) + ( ( u - N ) / N ) ) + ( ( ( psi ` u ) - ( psi ` N ) ) / N ) ) ) |
252 |
233 215 165 166
|
divdird |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) + ( ( psi ` u ) - ( psi ` N ) ) ) / N ) = ( ( ( u - N ) / N ) + ( ( ( psi ` u ) - ( psi ` N ) ) / N ) ) ) |
253 |
252
|
oveq2d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) + ( ( ( u - N ) + ( ( psi ` u ) - ( psi ` N ) ) ) / N ) ) = ( ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) + ( ( ( u - N ) / N ) + ( ( ( psi ` u ) - ( psi ` N ) ) / N ) ) ) ) |
254 |
245 251 253
|
3eqtr4d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) + ( ( ( psi ` u ) - ( psi ` N ) ) / N ) ) = ( ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) + ( ( ( u - N ) + ( ( psi ` u ) - ( psi ` N ) ) ) / N ) ) ) |
255 |
242 254
|
breqtrrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) x. ( abs ` ( ( R ` u ) / u ) ) ) + ( ( abs ` ( ( R ` u ) - ( R ` N ) ) ) / N ) ) <_ ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) + ( ( ( psi ` u ) - ( psi ` N ) ) / N ) ) ) |
256 |
97 157 150 212 255
|
letrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( ( R ` u ) / u ) - ( ( R ` N ) / N ) ) ) <_ ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) + ( ( ( psi ` u ) - ( psi ` N ) ) / N ) ) ) |
257 |
|
remulcl |
|- ( ( 2 e. RR /\ ( ( u - N ) / N ) e. RR ) -> ( 2 x. ( ( u - N ) / N ) ) e. RR ) |
258 |
29 107 257
|
sylancr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( 2 x. ( ( u - N ) / N ) ) e. RR ) |
259 |
258 139
|
readdcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( 2 x. ( ( u - N ) / N ) ) + ( T / ( log ` N ) ) ) e. RR ) |
260 |
|
remulcl |
|- ( ( 2 e. RR /\ ( u - N ) e. RR ) -> ( 2 x. ( u - N ) ) e. RR ) |
261 |
29 106 260
|
sylancr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( 2 x. ( u - N ) ) e. RR ) |
262 |
105 138
|
rerpdivcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( N / ( log ` N ) ) e. RR ) |
263 |
113 262
|
remulcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( T x. ( N / ( log ` N ) ) ) e. RR ) |
264 |
261 263
|
readdcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( 2 x. ( u - N ) ) + ( T x. ( N / ( log ` N ) ) ) ) e. RR ) |
265 |
|
fveq2 |
|- ( y = u -> ( psi ` y ) = ( psi ` u ) ) |
266 |
265
|
oveq1d |
|- ( y = u -> ( ( psi ` y ) - ( psi ` N ) ) = ( ( psi ` u ) - ( psi ` N ) ) ) |
267 |
|
oveq1 |
|- ( y = u -> ( y - N ) = ( u - N ) ) |
268 |
267
|
oveq2d |
|- ( y = u -> ( 2 x. ( y - N ) ) = ( 2 x. ( u - N ) ) ) |
269 |
268
|
oveq1d |
|- ( y = u -> ( ( 2 x. ( y - N ) ) + ( T x. ( N / ( log ` N ) ) ) ) = ( ( 2 x. ( u - N ) ) + ( T x. ( N / ( log ` N ) ) ) ) ) |
270 |
266 269
|
breq12d |
|- ( y = u -> ( ( ( psi ` y ) - ( psi ` N ) ) <_ ( ( 2 x. ( y - N ) ) + ( T x. ( N / ( log ` N ) ) ) ) <-> ( ( psi ` u ) - ( psi ` N ) ) <_ ( ( 2 x. ( u - N ) ) + ( T x. ( N / ( log ` N ) ) ) ) ) ) |
271 |
|
id |
|- ( x = N -> x = N ) |
272 |
|
oveq2 |
|- ( x = N -> ( 2 x. x ) = ( 2 x. N ) ) |
273 |
271 272
|
oveq12d |
|- ( x = N -> ( x [,] ( 2 x. x ) ) = ( N [,] ( 2 x. N ) ) ) |
274 |
|
fveq2 |
|- ( x = N -> ( psi ` x ) = ( psi ` N ) ) |
275 |
274
|
oveq2d |
|- ( x = N -> ( ( psi ` y ) - ( psi ` x ) ) = ( ( psi ` y ) - ( psi ` N ) ) ) |
276 |
|
oveq2 |
|- ( x = N -> ( y - x ) = ( y - N ) ) |
277 |
276
|
oveq2d |
|- ( x = N -> ( 2 x. ( y - x ) ) = ( 2 x. ( y - N ) ) ) |
278 |
|
fveq2 |
|- ( x = N -> ( log ` x ) = ( log ` N ) ) |
279 |
271 278
|
oveq12d |
|- ( x = N -> ( x / ( log ` x ) ) = ( N / ( log ` N ) ) ) |
280 |
279
|
oveq2d |
|- ( x = N -> ( T x. ( x / ( log ` x ) ) ) = ( T x. ( N / ( log ` N ) ) ) ) |
281 |
277 280
|
oveq12d |
|- ( x = N -> ( ( 2 x. ( y - x ) ) + ( T x. ( x / ( log ` x ) ) ) ) = ( ( 2 x. ( y - N ) ) + ( T x. ( N / ( log ` N ) ) ) ) ) |
282 |
275 281
|
breq12d |
|- ( x = N -> ( ( ( psi ` y ) - ( psi ` x ) ) <_ ( ( 2 x. ( y - x ) ) + ( T x. ( x / ( log ` x ) ) ) ) <-> ( ( psi ` y ) - ( psi ` N ) ) <_ ( ( 2 x. ( y - N ) ) + ( T x. ( N / ( log ` N ) ) ) ) ) ) |
283 |
273 282
|
raleqbidv |
|- ( x = N -> ( A. y e. ( x [,] ( 2 x. x ) ) ( ( psi ` y ) - ( psi ` x ) ) <_ ( ( 2 x. ( y - x ) ) + ( T x. ( x / ( log ` x ) ) ) ) <-> A. y e. ( N [,] ( 2 x. N ) ) ( ( psi ` y ) - ( psi ` N ) ) <_ ( ( 2 x. ( y - N ) ) + ( T x. ( N / ( log ` N ) ) ) ) ) ) |
284 |
12
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> A. x e. ( 1 (,) +oo ) A. y e. ( x [,] ( 2 x. x ) ) ( ( psi ` y ) - ( psi ` x ) ) <_ ( ( 2 x. ( y - x ) ) + ( T x. ( x / ( log ` x ) ) ) ) ) |
285 |
|
1xr |
|- 1 e. RR* |
286 |
|
elioopnf |
|- ( 1 e. RR* -> ( N e. ( 1 (,) +oo ) <-> ( N e. RR /\ 1 < N ) ) ) |
287 |
285 286
|
ax-mp |
|- ( N e. ( 1 (,) +oo ) <-> ( N e. RR /\ 1 < N ) ) |
288 |
105 137 287
|
sylanbrc |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> N e. ( 1 (,) +oo ) ) |
289 |
283 284 288
|
rspcdva |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> A. y e. ( N [,] ( 2 x. N ) ) ( ( psi ` y ) - ( psi ` N ) ) <_ ( ( 2 x. ( y - N ) ) + ( T x. ( N / ( log ` N ) ) ) ) ) |
290 |
28
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( 1 + ( L x. E ) ) x. N ) e. RR ) |
291 |
31
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( 2 x. N ) e. RR ) |
292 |
80
|
simp3d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> u <_ ( ( 1 + ( L x. E ) ) x. N ) ) |
293 |
|
ltle |
|- ( ( ( 1 + ( L x. E ) ) e. RR /\ 2 e. RR ) -> ( ( 1 + ( L x. E ) ) < 2 -> ( 1 + ( L x. E ) ) <_ 2 ) ) |
294 |
26 29 293
|
sylancl |
|- ( ph -> ( ( 1 + ( L x. E ) ) < 2 -> ( 1 + ( L x. E ) ) <_ 2 ) ) |
295 |
67 294
|
mpd |
|- ( ph -> ( 1 + ( L x. E ) ) <_ 2 ) |
296 |
295
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( 1 + ( L x. E ) ) <_ 2 ) |
297 |
26
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( 1 + ( L x. E ) ) e. RR ) |
298 |
29
|
a1i |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> 2 e. RR ) |
299 |
297 298 82
|
lemul1d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( 1 + ( L x. E ) ) <_ 2 <-> ( ( 1 + ( L x. E ) ) x. N ) <_ ( 2 x. N ) ) ) |
300 |
296 299
|
mpbid |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( 1 + ( L x. E ) ) x. N ) <_ ( 2 x. N ) ) |
301 |
81 290 291 292 300
|
letrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> u <_ ( 2 x. N ) ) |
302 |
|
elicc2 |
|- ( ( N e. RR /\ ( 2 x. N ) e. RR ) -> ( u e. ( N [,] ( 2 x. N ) ) <-> ( u e. RR /\ N <_ u /\ u <_ ( 2 x. N ) ) ) ) |
303 |
105 291 302
|
syl2anc |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( u e. ( N [,] ( 2 x. N ) ) <-> ( u e. RR /\ N <_ u /\ u <_ ( 2 x. N ) ) ) ) |
304 |
81 83 301 303
|
mpbir3and |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> u e. ( N [,] ( 2 x. N ) ) ) |
305 |
270 289 304
|
rspcdva |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( psi ` u ) - ( psi ` N ) ) <_ ( ( 2 x. ( u - N ) ) + ( T x. ( N / ( log ` N ) ) ) ) ) |
306 |
148 264 82 305
|
lediv1dd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( psi ` u ) - ( psi ` N ) ) / N ) <_ ( ( ( 2 x. ( u - N ) ) + ( T x. ( N / ( log ` N ) ) ) ) / N ) ) |
307 |
261
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( 2 x. ( u - N ) ) e. CC ) |
308 |
11
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> T e. RR+ ) |
309 |
308
|
rpred |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> T e. RR ) |
310 |
309 262
|
remulcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( T x. ( N / ( log ` N ) ) ) e. RR ) |
311 |
310
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( T x. ( N / ( log ` N ) ) ) e. CC ) |
312 |
|
divdir |
|- ( ( ( 2 x. ( u - N ) ) e. CC /\ ( T x. ( N / ( log ` N ) ) ) e. CC /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( ( 2 x. ( u - N ) ) + ( T x. ( N / ( log ` N ) ) ) ) / N ) = ( ( ( 2 x. ( u - N ) ) / N ) + ( ( T x. ( N / ( log ` N ) ) ) / N ) ) ) |
313 |
307 311 177 312
|
syl3anc |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( 2 x. ( u - N ) ) + ( T x. ( N / ( log ` N ) ) ) ) / N ) = ( ( ( 2 x. ( u - N ) ) / N ) + ( ( T x. ( N / ( log ` N ) ) ) / N ) ) ) |
314 |
|
2cnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> 2 e. CC ) |
315 |
314 233 165 166
|
divassd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( 2 x. ( u - N ) ) / N ) = ( 2 x. ( ( u - N ) / N ) ) ) |
316 |
113
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> T e. CC ) |
317 |
138
|
rpcnne0d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( log ` N ) e. CC /\ ( log ` N ) =/= 0 ) ) |
318 |
|
div12 |
|- ( ( T e. CC /\ N e. CC /\ ( ( log ` N ) e. CC /\ ( log ` N ) =/= 0 ) ) -> ( T x. ( N / ( log ` N ) ) ) = ( N x. ( T / ( log ` N ) ) ) ) |
319 |
316 165 317 318
|
syl3anc |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( T x. ( N / ( log ` N ) ) ) = ( N x. ( T / ( log ` N ) ) ) ) |
320 |
319
|
oveq1d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( T x. ( N / ( log ` N ) ) ) / N ) = ( ( N x. ( T / ( log ` N ) ) ) / N ) ) |
321 |
308 138
|
rpdivcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( T / ( log ` N ) ) e. RR+ ) |
322 |
321
|
rpcnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( T / ( log ` N ) ) e. CC ) |
323 |
322 165 166
|
divcan3d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( N x. ( T / ( log ` N ) ) ) / N ) = ( T / ( log ` N ) ) ) |
324 |
320 323
|
eqtrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( T x. ( N / ( log ` N ) ) ) / N ) = ( T / ( log ` N ) ) ) |
325 |
315 324
|
oveq12d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( 2 x. ( u - N ) ) / N ) + ( ( T x. ( N / ( log ` N ) ) ) / N ) ) = ( ( 2 x. ( ( u - N ) / N ) ) + ( T / ( log ` N ) ) ) ) |
326 |
313 325
|
eqtrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( 2 x. ( u - N ) ) + ( T x. ( N / ( log ` N ) ) ) ) / N ) = ( ( 2 x. ( ( u - N ) / N ) ) + ( T / ( log ` N ) ) ) ) |
327 |
306 326
|
breqtrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( psi ` u ) - ( psi ` N ) ) / N ) <_ ( ( 2 x. ( ( u - N ) / N ) ) + ( T / ( log ` N ) ) ) ) |
328 |
149 259 143 327
|
leadd2dd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) + ( ( ( psi ` u ) - ( psi ` N ) ) / N ) ) <_ ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) + ( ( 2 x. ( ( u - N ) / N ) ) + ( T / ( log ` N ) ) ) ) ) |
329 |
143
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) e. CC ) |
330 |
258
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( 2 x. ( ( u - N ) / N ) ) e. CC ) |
331 |
139
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( T / ( log ` N ) ) e. CC ) |
332 |
329 330 331
|
addassd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) + ( 2 x. ( ( u - N ) / N ) ) ) + ( T / ( log ` N ) ) ) = ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) + ( ( 2 x. ( ( u - N ) / N ) ) + ( T / ( log ` N ) ) ) ) ) |
333 |
|
2cn |
|- 2 e. CC |
334 |
|
mulcom |
|- ( ( 2 e. CC /\ ( ( u - N ) / N ) e. CC ) -> ( 2 x. ( ( u - N ) / N ) ) = ( ( ( u - N ) / N ) x. 2 ) ) |
335 |
333 197 334
|
sylancr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( 2 x. ( ( u - N ) / N ) ) = ( ( ( u - N ) / N ) x. 2 ) ) |
336 |
335
|
oveq2d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) + ( 2 x. ( ( u - N ) / N ) ) ) = ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) + ( ( ( u - N ) / N ) x. 2 ) ) ) |
337 |
142
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) e. CC ) |
338 |
197 337 314
|
adddid |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) x. ( ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) + 2 ) ) = ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) + ( ( ( u - N ) / N ) x. 2 ) ) ) |
339 |
246 174 314
|
addassd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) + 2 ) = ( ( abs ` ( ( R ` u ) / u ) ) + ( 1 + 2 ) ) ) |
340 |
|
1p2e3 |
|- ( 1 + 2 ) = 3 |
341 |
340
|
oveq2i |
|- ( ( abs ` ( ( R ` u ) / u ) ) + ( 1 + 2 ) ) = ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) |
342 |
339 341
|
eqtrdi |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) + 2 ) = ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) ) |
343 |
342
|
oveq2d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) x. ( ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) + 2 ) ) = ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) ) ) |
344 |
336 338 343
|
3eqtr2d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) + ( 2 x. ( ( u - N ) / N ) ) ) = ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) ) ) |
345 |
344
|
oveq1d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) + ( 2 x. ( ( u - N ) / N ) ) ) + ( T / ( log ` N ) ) ) = ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) ) + ( T / ( log ` N ) ) ) ) |
346 |
332 345
|
eqtr3d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) + ( ( 2 x. ( ( u - N ) / N ) ) + ( T / ( log ` N ) ) ) ) = ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) ) + ( T / ( log ` N ) ) ) ) |
347 |
328 346
|
breqtrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 1 ) ) + ( ( ( psi ` u ) - ( psi ` N ) ) / N ) ) <_ ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) ) + ( T / ( log ` N ) ) ) ) |
348 |
97 150 140 256 347
|
letrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( ( R ` u ) / u ) - ( ( R ` N ) / N ) ) ) <_ ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) ) + ( T / ( log ` N ) ) ) ) |
349 |
104
|
rehalfcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( E / 2 ) / 2 ) e. RR ) |
350 |
81 297 82
|
ledivmul2d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( u / N ) <_ ( 1 + ( L x. E ) ) <-> u <_ ( ( 1 + ( L x. E ) ) x. N ) ) ) |
351 |
292 350
|
mpbird |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( u / N ) <_ ( 1 + ( L x. E ) ) ) |
352 |
|
ax-1cn |
|- 1 e. CC |
353 |
25
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( L x. E ) e. RR ) |
354 |
353
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( L x. E ) e. CC ) |
355 |
|
addcom |
|- ( ( 1 e. CC /\ ( L x. E ) e. CC ) -> ( 1 + ( L x. E ) ) = ( ( L x. E ) + 1 ) ) |
356 |
352 354 355
|
sylancr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( 1 + ( L x. E ) ) = ( ( L x. E ) + 1 ) ) |
357 |
351 356
|
breqtrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( u / N ) <_ ( ( L x. E ) + 1 ) ) |
358 |
172 114 353
|
lesubaddd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u / N ) - 1 ) <_ ( L x. E ) <-> ( u / N ) <_ ( ( L x. E ) + 1 ) ) ) |
359 |
357 358
|
mpbird |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( u / N ) - 1 ) <_ ( L x. E ) ) |
360 |
170 359
|
eqbrtrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( u - N ) / N ) <_ ( L x. E ) ) |
361 |
2
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> A e. RR+ ) |
362 |
361
|
rpred |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> A e. RR ) |
363 |
|
fveq2 |
|- ( x = u -> ( R ` x ) = ( R ` u ) ) |
364 |
|
id |
|- ( x = u -> x = u ) |
365 |
363 364
|
oveq12d |
|- ( x = u -> ( ( R ` x ) / x ) = ( ( R ` u ) / u ) ) |
366 |
365
|
fveq2d |
|- ( x = u -> ( abs ` ( ( R ` x ) / x ) ) = ( abs ` ( ( R ` u ) / u ) ) ) |
367 |
366
|
breq1d |
|- ( x = u -> ( ( abs ` ( ( R ` x ) / x ) ) <_ A <-> ( abs ` ( ( R ` u ) / u ) ) <_ A ) ) |
368 |
4
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> A. x e. RR+ ( abs ` ( ( R ` x ) / x ) ) <_ A ) |
369 |
367 368 84
|
rspcdva |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( R ` u ) / u ) ) <_ A ) |
370 |
90 362 109 369
|
leadd1dd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) <_ ( A + 3 ) ) |
371 |
107 201
|
jca |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) e. RR /\ 0 <_ ( ( u - N ) / N ) ) ) |
372 |
|
3rp |
|- 3 e. RR+ |
373 |
|
rpaddcl |
|- ( ( A e. RR+ /\ 3 e. RR+ ) -> ( A + 3 ) e. RR+ ) |
374 |
361 372 373
|
sylancl |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( A + 3 ) e. RR+ ) |
375 |
374
|
rprege0d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( A + 3 ) e. RR /\ 0 <_ ( A + 3 ) ) ) |
376 |
|
lemul12b |
|- ( ( ( ( ( ( u - N ) / N ) e. RR /\ 0 <_ ( ( u - N ) / N ) ) /\ ( L x. E ) e. RR ) /\ ( ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) e. RR /\ ( ( A + 3 ) e. RR /\ 0 <_ ( A + 3 ) ) ) ) -> ( ( ( ( u - N ) / N ) <_ ( L x. E ) /\ ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) <_ ( A + 3 ) ) -> ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) ) <_ ( ( L x. E ) x. ( A + 3 ) ) ) ) |
377 |
371 353 110 375 376
|
syl22anc |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) <_ ( L x. E ) /\ ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) <_ ( A + 3 ) ) -> ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) ) <_ ( ( L x. E ) x. ( A + 3 ) ) ) ) |
378 |
360 370 377
|
mp2and |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) ) <_ ( ( L x. E ) x. ( A + 3 ) ) ) |
379 |
43
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> E e. RR+ ) |
380 |
115 116
|
mp1i |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> 4 e. RR+ ) |
381 |
379 380
|
rpdivcld |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( E / 4 ) e. RR+ ) |
382 |
381
|
rpcnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( E / 4 ) e. CC ) |
383 |
374
|
rpcnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( A + 3 ) e. CC ) |
384 |
374
|
rpne0d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( A + 3 ) =/= 0 ) |
385 |
382 383 384
|
divcan1d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( E / 4 ) / ( A + 3 ) ) x. ( A + 3 ) ) = ( E / 4 ) ) |
386 |
24
|
recnd |
|- ( ph -> E e. CC ) |
387 |
386
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> E e. CC ) |
388 |
380
|
rpcnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> 4 e. CC ) |
389 |
380
|
rpne0d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> 4 =/= 0 ) |
390 |
387 388 389
|
divrec2d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( E / 4 ) = ( ( 1 / 4 ) x. E ) ) |
391 |
390
|
oveq1d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( E / 4 ) / ( A + 3 ) ) = ( ( ( 1 / 4 ) x. E ) / ( A + 3 ) ) ) |
392 |
|
4cn |
|- 4 e. CC |
393 |
|
4ne0 |
|- 4 =/= 0 |
394 |
392 393
|
reccli |
|- ( 1 / 4 ) e. CC |
395 |
394
|
a1i |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( 1 / 4 ) e. CC ) |
396 |
395 387 383 384
|
div23d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( 1 / 4 ) x. E ) / ( A + 3 ) ) = ( ( ( 1 / 4 ) / ( A + 3 ) ) x. E ) ) |
397 |
3
|
oveq1i |
|- ( L x. E ) = ( ( ( 1 / 4 ) / ( A + 3 ) ) x. E ) |
398 |
396 397
|
eqtr4di |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( 1 / 4 ) x. E ) / ( A + 3 ) ) = ( L x. E ) ) |
399 |
391 398
|
eqtr2d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( L x. E ) = ( ( E / 4 ) / ( A + 3 ) ) ) |
400 |
399
|
oveq1d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( L x. E ) x. ( A + 3 ) ) = ( ( ( E / 4 ) / ( A + 3 ) ) x. ( A + 3 ) ) ) |
401 |
|
2ne0 |
|- 2 =/= 0 |
402 |
401
|
a1i |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> 2 =/= 0 ) |
403 |
387 314 314 402 402
|
divdiv1d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( E / 2 ) / 2 ) = ( E / ( 2 x. 2 ) ) ) |
404 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
405 |
404
|
oveq2i |
|- ( E / ( 2 x. 2 ) ) = ( E / 4 ) |
406 |
403 405
|
eqtrdi |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( E / 2 ) / 2 ) = ( E / 4 ) ) |
407 |
385 400 406
|
3eqtr4d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( L x. E ) x. ( A + 3 ) ) = ( ( E / 2 ) / 2 ) ) |
408 |
378 407
|
breqtrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) ) <_ ( ( E / 2 ) / 2 ) ) |
409 |
120
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( T / ( E / 4 ) ) e. RR ) |
410 |
138
|
rpred |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( log ` N ) e. RR ) |
411 |
82
|
reeflogd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( exp ` ( log ` N ) ) = N ) |
412 |
136 411
|
breqtrrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( exp ` ( T / ( E / 4 ) ) ) < ( exp ` ( log ` N ) ) ) |
413 |
|
eflt |
|- ( ( ( T / ( E / 4 ) ) e. RR /\ ( log ` N ) e. RR ) -> ( ( T / ( E / 4 ) ) < ( log ` N ) <-> ( exp ` ( T / ( E / 4 ) ) ) < ( exp ` ( log ` N ) ) ) ) |
414 |
409 410 413
|
syl2anc |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( T / ( E / 4 ) ) < ( log ` N ) <-> ( exp ` ( T / ( E / 4 ) ) ) < ( exp ` ( log ` N ) ) ) ) |
415 |
412 414
|
mpbird |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( T / ( E / 4 ) ) < ( log ` N ) ) |
416 |
409 410 415
|
ltled |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( T / ( E / 4 ) ) <_ ( log ` N ) ) |
417 |
113 381 138 416
|
lediv23d |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( T / ( log ` N ) ) <_ ( E / 4 ) ) |
418 |
417 406
|
breqtrrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( T / ( log ` N ) ) <_ ( ( E / 2 ) / 2 ) ) |
419 |
111 139 349 349 408 418
|
le2addd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) ) + ( T / ( log ` N ) ) ) <_ ( ( ( E / 2 ) / 2 ) + ( ( E / 2 ) / 2 ) ) ) |
420 |
104
|
recnd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( E / 2 ) e. CC ) |
421 |
420
|
2halvesd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( E / 2 ) / 2 ) + ( ( E / 2 ) / 2 ) ) = ( E / 2 ) ) |
422 |
419 421
|
breqtrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( ( ( u - N ) / N ) x. ( ( abs ` ( ( R ` u ) / u ) ) + 3 ) ) + ( T / ( log ` N ) ) ) <_ ( E / 2 ) ) |
423 |
97 140 104 348 422
|
letrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( ( R ` u ) / u ) - ( ( R ` N ) / N ) ) ) <_ ( E / 2 ) ) |
424 |
16
|
simprd |
|- ( ph -> ( abs ` ( ( R ` N ) / N ) ) <_ ( E / 2 ) ) |
425 |
424
|
adantr |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( R ` N ) / N ) ) <_ ( E / 2 ) ) |
426 |
97 98 104 104 423 425
|
le2addd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( abs ` ( ( ( R ` u ) / u ) - ( ( R ` N ) / N ) ) ) + ( abs ` ( ( R ` N ) / N ) ) ) <_ ( ( E / 2 ) + ( E / 2 ) ) ) |
427 |
387
|
2halvesd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( E / 2 ) + ( E / 2 ) ) = E ) |
428 |
426 427
|
breqtrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( ( abs ` ( ( ( R ` u ) / u ) - ( ( R ` N ) / N ) ) ) + ( abs ` ( ( R ` N ) / N ) ) ) <_ E ) |
429 |
90 99 100 103 428
|
letrd |
|- ( ( ph /\ u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) -> ( abs ` ( ( R ` u ) / u ) ) <_ E ) |
430 |
429
|
ralrimiva |
|- ( ph -> A. u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) |
431 |
19 79 430
|
jca31 |
|- ( ph -> ( ( Y < N /\ ( ( 1 + ( L x. E ) ) x. N ) < ( M x. Y ) ) /\ A. u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) |
432 |
|
breq2 |
|- ( z = N -> ( Y < z <-> Y < N ) ) |
433 |
|
oveq2 |
|- ( z = N -> ( ( 1 + ( L x. E ) ) x. z ) = ( ( 1 + ( L x. E ) ) x. N ) ) |
434 |
433
|
breq1d |
|- ( z = N -> ( ( ( 1 + ( L x. E ) ) x. z ) < ( M x. Y ) <-> ( ( 1 + ( L x. E ) ) x. N ) < ( M x. Y ) ) ) |
435 |
432 434
|
anbi12d |
|- ( z = N -> ( ( Y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( M x. Y ) ) <-> ( Y < N /\ ( ( 1 + ( L x. E ) ) x. N ) < ( M x. Y ) ) ) ) |
436 |
|
id |
|- ( z = N -> z = N ) |
437 |
436 433
|
oveq12d |
|- ( z = N -> ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) = ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ) |
438 |
437
|
raleqdv |
|- ( z = N -> ( A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E <-> A. u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) |
439 |
435 438
|
anbi12d |
|- ( z = N -> ( ( ( Y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( M x. Y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) <-> ( ( Y < N /\ ( ( 1 + ( L x. E ) ) x. N ) < ( M x. Y ) ) /\ A. u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) |
440 |
439
|
rspcev |
|- ( ( N e. RR+ /\ ( ( Y < N /\ ( ( 1 + ( L x. E ) ) x. N ) < ( M x. Y ) ) /\ A. u e. ( N [,] ( ( 1 + ( L x. E ) ) x. N ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) -> E. z e. RR+ ( ( Y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( M x. Y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) |
441 |
17 431 440
|
syl2anc |
|- ( ph -> E. z e. RR+ ( ( Y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( M x. Y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) |