Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem3.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
2 |
|
pntlem3.a |
|- ( ph -> A e. RR+ ) |
3 |
|
pntlem3.A |
|- ( ph -> A. x e. RR+ ( abs ` ( ( R ` x ) / x ) ) <_ A ) |
4 |
|
pntlem3.1 |
|- T = { t e. ( 0 [,] A ) | E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t } |
5 |
|
pntlem3.2 |
|- ( ph -> C e. RR+ ) |
6 |
|
pntlem3.3 |
|- ( ( ph /\ u e. T ) -> ( u - ( C x. ( u ^ 3 ) ) ) e. T ) |
7 |
|
rpssre |
|- RR+ C_ RR |
8 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
9 |
8
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
10 |
9
|
a1i |
|- ( ( ph /\ 0 < inf ( T , RR , < ) ) -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
11 |
|
ssid |
|- CC C_ CC |
12 |
|
cncfmptid |
|- ( ( CC C_ CC /\ CC C_ CC ) -> ( p e. CC |-> p ) e. ( CC -cn-> CC ) ) |
13 |
11 11 12
|
mp2an |
|- ( p e. CC |-> p ) e. ( CC -cn-> CC ) |
14 |
13
|
a1i |
|- ( ( ph /\ 0 < inf ( T , RR , < ) ) -> ( p e. CC |-> p ) e. ( CC -cn-> CC ) ) |
15 |
5
|
adantr |
|- ( ( ph /\ 0 < inf ( T , RR , < ) ) -> C e. RR+ ) |
16 |
15
|
rpcnd |
|- ( ( ph /\ 0 < inf ( T , RR , < ) ) -> C e. CC ) |
17 |
11
|
a1i |
|- ( ( ph /\ 0 < inf ( T , RR , < ) ) -> CC C_ CC ) |
18 |
|
cncfmptc |
|- ( ( C e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( p e. CC |-> C ) e. ( CC -cn-> CC ) ) |
19 |
16 17 17 18
|
syl3anc |
|- ( ( ph /\ 0 < inf ( T , RR , < ) ) -> ( p e. CC |-> C ) e. ( CC -cn-> CC ) ) |
20 |
|
3nn0 |
|- 3 e. NN0 |
21 |
8
|
expcn |
|- ( 3 e. NN0 -> ( p e. CC |-> ( p ^ 3 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
22 |
20 21
|
mp1i |
|- ( ( ph /\ 0 < inf ( T , RR , < ) ) -> ( p e. CC |-> ( p ^ 3 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
23 |
8
|
cncfcn1 |
|- ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
24 |
22 23
|
eleqtrrdi |
|- ( ( ph /\ 0 < inf ( T , RR , < ) ) -> ( p e. CC |-> ( p ^ 3 ) ) e. ( CC -cn-> CC ) ) |
25 |
19 24
|
mulcncf |
|- ( ( ph /\ 0 < inf ( T , RR , < ) ) -> ( p e. CC |-> ( C x. ( p ^ 3 ) ) ) e. ( CC -cn-> CC ) ) |
26 |
8 10 14 25
|
cncfmpt2f |
|- ( ( ph /\ 0 < inf ( T , RR , < ) ) -> ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) e. ( CC -cn-> CC ) ) |
27 |
4
|
ssrab3 |
|- T C_ ( 0 [,] A ) |
28 |
|
0re |
|- 0 e. RR |
29 |
2
|
rpred |
|- ( ph -> A e. RR ) |
30 |
|
iccssre |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 [,] A ) C_ RR ) |
31 |
28 29 30
|
sylancr |
|- ( ph -> ( 0 [,] A ) C_ RR ) |
32 |
27 31
|
sstrid |
|- ( ph -> T C_ RR ) |
33 |
|
0xr |
|- 0 e. RR* |
34 |
2
|
rpxrd |
|- ( ph -> A e. RR* ) |
35 |
2
|
rpge0d |
|- ( ph -> 0 <_ A ) |
36 |
|
ubicc2 |
|- ( ( 0 e. RR* /\ A e. RR* /\ 0 <_ A ) -> A e. ( 0 [,] A ) ) |
37 |
33 34 35 36
|
mp3an2i |
|- ( ph -> A e. ( 0 [,] A ) ) |
38 |
|
1rp |
|- 1 e. RR+ |
39 |
|
fveq2 |
|- ( x = z -> ( R ` x ) = ( R ` z ) ) |
40 |
|
id |
|- ( x = z -> x = z ) |
41 |
39 40
|
oveq12d |
|- ( x = z -> ( ( R ` x ) / x ) = ( ( R ` z ) / z ) ) |
42 |
41
|
fveq2d |
|- ( x = z -> ( abs ` ( ( R ` x ) / x ) ) = ( abs ` ( ( R ` z ) / z ) ) ) |
43 |
42
|
breq1d |
|- ( x = z -> ( ( abs ` ( ( R ` x ) / x ) ) <_ A <-> ( abs ` ( ( R ` z ) / z ) ) <_ A ) ) |
44 |
3
|
adantr |
|- ( ( ph /\ z e. ( 1 [,) +oo ) ) -> A. x e. RR+ ( abs ` ( ( R ` x ) / x ) ) <_ A ) |
45 |
|
1re |
|- 1 e. RR |
46 |
|
elicopnf |
|- ( 1 e. RR -> ( z e. ( 1 [,) +oo ) <-> ( z e. RR /\ 1 <_ z ) ) ) |
47 |
45 46
|
mp1i |
|- ( ph -> ( z e. ( 1 [,) +oo ) <-> ( z e. RR /\ 1 <_ z ) ) ) |
48 |
47
|
simprbda |
|- ( ( ph /\ z e. ( 1 [,) +oo ) ) -> z e. RR ) |
49 |
|
0red |
|- ( ( ph /\ z e. ( 1 [,) +oo ) ) -> 0 e. RR ) |
50 |
45
|
a1i |
|- ( ( ph /\ z e. ( 1 [,) +oo ) ) -> 1 e. RR ) |
51 |
|
0lt1 |
|- 0 < 1 |
52 |
51
|
a1i |
|- ( ( ph /\ z e. ( 1 [,) +oo ) ) -> 0 < 1 ) |
53 |
47
|
simplbda |
|- ( ( ph /\ z e. ( 1 [,) +oo ) ) -> 1 <_ z ) |
54 |
49 50 48 52 53
|
ltletrd |
|- ( ( ph /\ z e. ( 1 [,) +oo ) ) -> 0 < z ) |
55 |
48 54
|
elrpd |
|- ( ( ph /\ z e. ( 1 [,) +oo ) ) -> z e. RR+ ) |
56 |
43 44 55
|
rspcdva |
|- ( ( ph /\ z e. ( 1 [,) +oo ) ) -> ( abs ` ( ( R ` z ) / z ) ) <_ A ) |
57 |
56
|
ralrimiva |
|- ( ph -> A. z e. ( 1 [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ A ) |
58 |
|
oveq1 |
|- ( y = 1 -> ( y [,) +oo ) = ( 1 [,) +oo ) ) |
59 |
58
|
raleqdv |
|- ( y = 1 -> ( A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ A <-> A. z e. ( 1 [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ A ) ) |
60 |
59
|
rspcev |
|- ( ( 1 e. RR+ /\ A. z e. ( 1 [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ A ) -> E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ A ) |
61 |
38 57 60
|
sylancr |
|- ( ph -> E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ A ) |
62 |
|
breq2 |
|- ( t = A -> ( ( abs ` ( ( R ` z ) / z ) ) <_ t <-> ( abs ` ( ( R ` z ) / z ) ) <_ A ) ) |
63 |
62
|
rexralbidv |
|- ( t = A -> ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t <-> E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ A ) ) |
64 |
63 4
|
elrab2 |
|- ( A e. T <-> ( A e. ( 0 [,] A ) /\ E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ A ) ) |
65 |
37 61 64
|
sylanbrc |
|- ( ph -> A e. T ) |
66 |
65
|
ne0d |
|- ( ph -> T =/= (/) ) |
67 |
|
elicc2 |
|- ( ( 0 e. RR /\ A e. RR ) -> ( t e. ( 0 [,] A ) <-> ( t e. RR /\ 0 <_ t /\ t <_ A ) ) ) |
68 |
28 29 67
|
sylancr |
|- ( ph -> ( t e. ( 0 [,] A ) <-> ( t e. RR /\ 0 <_ t /\ t <_ A ) ) ) |
69 |
68
|
biimpa |
|- ( ( ph /\ t e. ( 0 [,] A ) ) -> ( t e. RR /\ 0 <_ t /\ t <_ A ) ) |
70 |
69
|
simp2d |
|- ( ( ph /\ t e. ( 0 [,] A ) ) -> 0 <_ t ) |
71 |
70
|
a1d |
|- ( ( ph /\ t e. ( 0 [,] A ) ) -> ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t -> 0 <_ t ) ) |
72 |
71
|
ralrimiva |
|- ( ph -> A. t e. ( 0 [,] A ) ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t -> 0 <_ t ) ) |
73 |
4
|
raleqi |
|- ( A. w e. T 0 <_ w <-> A. w e. { t e. ( 0 [,] A ) | E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t } 0 <_ w ) |
74 |
|
breq2 |
|- ( w = t -> ( 0 <_ w <-> 0 <_ t ) ) |
75 |
74
|
ralrab2 |
|- ( A. w e. { t e. ( 0 [,] A ) | E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t } 0 <_ w <-> A. t e. ( 0 [,] A ) ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t -> 0 <_ t ) ) |
76 |
73 75
|
bitri |
|- ( A. w e. T 0 <_ w <-> A. t e. ( 0 [,] A ) ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t -> 0 <_ t ) ) |
77 |
72 76
|
sylibr |
|- ( ph -> A. w e. T 0 <_ w ) |
78 |
|
breq1 |
|- ( x = 0 -> ( x <_ w <-> 0 <_ w ) ) |
79 |
78
|
ralbidv |
|- ( x = 0 -> ( A. w e. T x <_ w <-> A. w e. T 0 <_ w ) ) |
80 |
79
|
rspcev |
|- ( ( 0 e. RR /\ A. w e. T 0 <_ w ) -> E. x e. RR A. w e. T x <_ w ) |
81 |
28 77 80
|
sylancr |
|- ( ph -> E. x e. RR A. w e. T x <_ w ) |
82 |
|
infrecl |
|- ( ( T C_ RR /\ T =/= (/) /\ E. x e. RR A. w e. T x <_ w ) -> inf ( T , RR , < ) e. RR ) |
83 |
32 66 81 82
|
syl3anc |
|- ( ph -> inf ( T , RR , < ) e. RR ) |
84 |
83
|
recnd |
|- ( ph -> inf ( T , RR , < ) e. CC ) |
85 |
84
|
adantr |
|- ( ( ph /\ 0 < inf ( T , RR , < ) ) -> inf ( T , RR , < ) e. CC ) |
86 |
|
elrp |
|- ( inf ( T , RR , < ) e. RR+ <-> ( inf ( T , RR , < ) e. RR /\ 0 < inf ( T , RR , < ) ) ) |
87 |
86
|
biimpri |
|- ( ( inf ( T , RR , < ) e. RR /\ 0 < inf ( T , RR , < ) ) -> inf ( T , RR , < ) e. RR+ ) |
88 |
83 87
|
sylan |
|- ( ( ph /\ 0 < inf ( T , RR , < ) ) -> inf ( T , RR , < ) e. RR+ ) |
89 |
|
3z |
|- 3 e. ZZ |
90 |
|
rpexpcl |
|- ( ( inf ( T , RR , < ) e. RR+ /\ 3 e. ZZ ) -> ( inf ( T , RR , < ) ^ 3 ) e. RR+ ) |
91 |
88 89 90
|
sylancl |
|- ( ( ph /\ 0 < inf ( T , RR , < ) ) -> ( inf ( T , RR , < ) ^ 3 ) e. RR+ ) |
92 |
15 91
|
rpmulcld |
|- ( ( ph /\ 0 < inf ( T , RR , < ) ) -> ( C x. ( inf ( T , RR , < ) ^ 3 ) ) e. RR+ ) |
93 |
|
cncfi |
|- ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) e. ( CC -cn-> CC ) /\ inf ( T , RR , < ) e. CC /\ ( C x. ( inf ( T , RR , < ) ^ 3 ) ) e. RR+ ) -> E. s e. RR+ A. u e. CC ( ( abs ` ( u - inf ( T , RR , < ) ) ) < s -> ( abs ` ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) - ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) |
94 |
26 85 92 93
|
syl3anc |
|- ( ( ph /\ 0 < inf ( T , RR , < ) ) -> E. s e. RR+ A. u e. CC ( ( abs ` ( u - inf ( T , RR , < ) ) ) < s -> ( abs ` ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) - ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) |
95 |
83
|
ad2antrr |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> inf ( T , RR , < ) e. RR ) |
96 |
|
rphalfcl |
|- ( s e. RR+ -> ( s / 2 ) e. RR+ ) |
97 |
96
|
adantl |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> ( s / 2 ) e. RR+ ) |
98 |
95 97
|
ltaddrpd |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> inf ( T , RR , < ) < ( inf ( T , RR , < ) + ( s / 2 ) ) ) |
99 |
97
|
rpred |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> ( s / 2 ) e. RR ) |
100 |
95 99
|
readdcld |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> ( inf ( T , RR , < ) + ( s / 2 ) ) e. RR ) |
101 |
95 100
|
ltnled |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> ( inf ( T , RR , < ) < ( inf ( T , RR , < ) + ( s / 2 ) ) <-> -. ( inf ( T , RR , < ) + ( s / 2 ) ) <_ inf ( T , RR , < ) ) ) |
102 |
98 101
|
mpbid |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> -. ( inf ( T , RR , < ) + ( s / 2 ) ) <_ inf ( T , RR , < ) ) |
103 |
|
ax-resscn |
|- RR C_ CC |
104 |
32 103
|
sstrdi |
|- ( ph -> T C_ CC ) |
105 |
104
|
ad2antrr |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> T C_ CC ) |
106 |
|
ssralv |
|- ( T C_ CC -> ( A. u e. CC ( ( abs ` ( u - inf ( T , RR , < ) ) ) < s -> ( abs ` ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) - ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) -> A. u e. T ( ( abs ` ( u - inf ( T , RR , < ) ) ) < s -> ( abs ` ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) - ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) ) |
107 |
105 106
|
syl |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> ( A. u e. CC ( ( abs ` ( u - inf ( T , RR , < ) ) ) < s -> ( abs ` ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) - ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) -> A. u e. T ( ( abs ` ( u - inf ( T , RR , < ) ) ) < s -> ( abs ` ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) - ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) ) |
108 |
32
|
ad2antrr |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> T C_ RR ) |
109 |
108
|
sselda |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> u e. RR ) |
110 |
100
|
adantr |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( inf ( T , RR , < ) + ( s / 2 ) ) e. RR ) |
111 |
109 110
|
ltnled |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( u < ( inf ( T , RR , < ) + ( s / 2 ) ) <-> -. ( inf ( T , RR , < ) + ( s / 2 ) ) <_ u ) ) |
112 |
83
|
ad3antrrr |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> inf ( T , RR , < ) e. RR ) |
113 |
99
|
adantr |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( s / 2 ) e. RR ) |
114 |
112 113
|
resubcld |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( inf ( T , RR , < ) - ( s / 2 ) ) e. RR ) |
115 |
95 97
|
ltsubrpd |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> ( inf ( T , RR , < ) - ( s / 2 ) ) < inf ( T , RR , < ) ) |
116 |
115
|
adantr |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( inf ( T , RR , < ) - ( s / 2 ) ) < inf ( T , RR , < ) ) |
117 |
32
|
ad3antrrr |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> T C_ RR ) |
118 |
81
|
ad3antrrr |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> E. x e. RR A. w e. T x <_ w ) |
119 |
|
simpr |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> u e. T ) |
120 |
|
infrelb |
|- ( ( T C_ RR /\ E. x e. RR A. w e. T x <_ w /\ u e. T ) -> inf ( T , RR , < ) <_ u ) |
121 |
117 118 119 120
|
syl3anc |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> inf ( T , RR , < ) <_ u ) |
122 |
114 112 109 116 121
|
ltletrd |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( inf ( T , RR , < ) - ( s / 2 ) ) < u ) |
123 |
109 112 113
|
absdifltd |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( abs ` ( u - inf ( T , RR , < ) ) ) < ( s / 2 ) <-> ( ( inf ( T , RR , < ) - ( s / 2 ) ) < u /\ u < ( inf ( T , RR , < ) + ( s / 2 ) ) ) ) ) |
124 |
123
|
biimprd |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( ( inf ( T , RR , < ) - ( s / 2 ) ) < u /\ u < ( inf ( T , RR , < ) + ( s / 2 ) ) ) -> ( abs ` ( u - inf ( T , RR , < ) ) ) < ( s / 2 ) ) ) |
125 |
122 124
|
mpand |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( u < ( inf ( T , RR , < ) + ( s / 2 ) ) -> ( abs ` ( u - inf ( T , RR , < ) ) ) < ( s / 2 ) ) ) |
126 |
|
rphalflt |
|- ( s e. RR+ -> ( s / 2 ) < s ) |
127 |
126
|
ad2antlr |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( s / 2 ) < s ) |
128 |
109 112
|
resubcld |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( u - inf ( T , RR , < ) ) e. RR ) |
129 |
128
|
recnd |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( u - inf ( T , RR , < ) ) e. CC ) |
130 |
129
|
abscld |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( abs ` ( u - inf ( T , RR , < ) ) ) e. RR ) |
131 |
|
rpre |
|- ( s e. RR+ -> s e. RR ) |
132 |
131
|
ad2antlr |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> s e. RR ) |
133 |
|
lttr |
|- ( ( ( abs ` ( u - inf ( T , RR , < ) ) ) e. RR /\ ( s / 2 ) e. RR /\ s e. RR ) -> ( ( ( abs ` ( u - inf ( T , RR , < ) ) ) < ( s / 2 ) /\ ( s / 2 ) < s ) -> ( abs ` ( u - inf ( T , RR , < ) ) ) < s ) ) |
134 |
130 113 132 133
|
syl3anc |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( ( abs ` ( u - inf ( T , RR , < ) ) ) < ( s / 2 ) /\ ( s / 2 ) < s ) -> ( abs ` ( u - inf ( T , RR , < ) ) ) < s ) ) |
135 |
127 134
|
mpan2d |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( abs ` ( u - inf ( T , RR , < ) ) ) < ( s / 2 ) -> ( abs ` ( u - inf ( T , RR , < ) ) ) < s ) ) |
136 |
125 135
|
syld |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( u < ( inf ( T , RR , < ) + ( s / 2 ) ) -> ( abs ` ( u - inf ( T , RR , < ) ) ) < s ) ) |
137 |
111 136
|
sylbird |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( -. ( inf ( T , RR , < ) + ( s / 2 ) ) <_ u -> ( abs ` ( u - inf ( T , RR , < ) ) ) < s ) ) |
138 |
137
|
con1d |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( -. ( abs ` ( u - inf ( T , RR , < ) ) ) < s -> ( inf ( T , RR , < ) + ( s / 2 ) ) <_ u ) ) |
139 |
109
|
recnd |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> u e. CC ) |
140 |
|
id |
|- ( p = u -> p = u ) |
141 |
|
oveq1 |
|- ( p = u -> ( p ^ 3 ) = ( u ^ 3 ) ) |
142 |
141
|
oveq2d |
|- ( p = u -> ( C x. ( p ^ 3 ) ) = ( C x. ( u ^ 3 ) ) ) |
143 |
140 142
|
oveq12d |
|- ( p = u -> ( p - ( C x. ( p ^ 3 ) ) ) = ( u - ( C x. ( u ^ 3 ) ) ) ) |
144 |
|
eqid |
|- ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) = ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) |
145 |
|
ovex |
|- ( u - ( C x. ( u ^ 3 ) ) ) e. _V |
146 |
143 144 145
|
fvmpt |
|- ( u e. CC -> ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) = ( u - ( C x. ( u ^ 3 ) ) ) ) |
147 |
139 146
|
syl |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) = ( u - ( C x. ( u ^ 3 ) ) ) ) |
148 |
85
|
ad2antrr |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> inf ( T , RR , < ) e. CC ) |
149 |
|
id |
|- ( p = inf ( T , RR , < ) -> p = inf ( T , RR , < ) ) |
150 |
|
oveq1 |
|- ( p = inf ( T , RR , < ) -> ( p ^ 3 ) = ( inf ( T , RR , < ) ^ 3 ) ) |
151 |
150
|
oveq2d |
|- ( p = inf ( T , RR , < ) -> ( C x. ( p ^ 3 ) ) = ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) |
152 |
149 151
|
oveq12d |
|- ( p = inf ( T , RR , < ) -> ( p - ( C x. ( p ^ 3 ) ) ) = ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) |
153 |
|
ovex |
|- ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) e. _V |
154 |
152 144 153
|
fvmpt |
|- ( inf ( T , RR , < ) e. CC -> ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) = ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) |
155 |
148 154
|
syl |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) = ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) |
156 |
147 155
|
oveq12d |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) - ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) ) = ( ( u - ( C x. ( u ^ 3 ) ) ) - ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) ) |
157 |
156
|
fveq2d |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( abs ` ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) - ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) ) ) = ( abs ` ( ( u - ( C x. ( u ^ 3 ) ) ) - ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) ) ) |
158 |
157
|
breq1d |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( abs ` ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) - ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) <-> ( abs ` ( ( u - ( C x. ( u ^ 3 ) ) ) - ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) |
159 |
5
|
rpred |
|- ( ph -> C e. RR ) |
160 |
159
|
ad3antrrr |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> C e. RR ) |
161 |
|
reexpcl |
|- ( ( u e. RR /\ 3 e. NN0 ) -> ( u ^ 3 ) e. RR ) |
162 |
109 20 161
|
sylancl |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( u ^ 3 ) e. RR ) |
163 |
160 162
|
remulcld |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( C x. ( u ^ 3 ) ) e. RR ) |
164 |
109 163
|
resubcld |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( u - ( C x. ( u ^ 3 ) ) ) e. RR ) |
165 |
20
|
a1i |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> 3 e. NN0 ) |
166 |
112 165
|
reexpcld |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( inf ( T , RR , < ) ^ 3 ) e. RR ) |
167 |
160 166
|
remulcld |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( C x. ( inf ( T , RR , < ) ^ 3 ) ) e. RR ) |
168 |
112 167
|
resubcld |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) e. RR ) |
169 |
164 168 167
|
absdifltd |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( abs ` ( ( u - ( C x. ( u ^ 3 ) ) ) - ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) <-> ( ( ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) < ( u - ( C x. ( u ^ 3 ) ) ) /\ ( u - ( C x. ( u ^ 3 ) ) ) < ( ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) + ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) ) ) |
170 |
167
|
recnd |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( C x. ( inf ( T , RR , < ) ^ 3 ) ) e. CC ) |
171 |
148 170
|
npcand |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) + ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) = inf ( T , RR , < ) ) |
172 |
171
|
breq2d |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( u - ( C x. ( u ^ 3 ) ) ) < ( ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) + ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) <-> ( u - ( C x. ( u ^ 3 ) ) ) < inf ( T , RR , < ) ) ) |
173 |
6
|
ad4ant14 |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( u - ( C x. ( u ^ 3 ) ) ) e. T ) |
174 |
|
infrelb |
|- ( ( T C_ RR /\ E. x e. RR A. w e. T x <_ w /\ ( u - ( C x. ( u ^ 3 ) ) ) e. T ) -> inf ( T , RR , < ) <_ ( u - ( C x. ( u ^ 3 ) ) ) ) |
175 |
117 118 173 174
|
syl3anc |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> inf ( T , RR , < ) <_ ( u - ( C x. ( u ^ 3 ) ) ) ) |
176 |
112 164 175
|
lensymd |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> -. ( u - ( C x. ( u ^ 3 ) ) ) < inf ( T , RR , < ) ) |
177 |
176
|
pm2.21d |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( u - ( C x. ( u ^ 3 ) ) ) < inf ( T , RR , < ) -> ( inf ( T , RR , < ) + ( s / 2 ) ) <_ u ) ) |
178 |
172 177
|
sylbid |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( u - ( C x. ( u ^ 3 ) ) ) < ( ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) + ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) -> ( inf ( T , RR , < ) + ( s / 2 ) ) <_ u ) ) |
179 |
178
|
adantld |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( ( ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) < ( u - ( C x. ( u ^ 3 ) ) ) /\ ( u - ( C x. ( u ^ 3 ) ) ) < ( ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) + ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) -> ( inf ( T , RR , < ) + ( s / 2 ) ) <_ u ) ) |
180 |
169 179
|
sylbid |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( abs ` ( ( u - ( C x. ( u ^ 3 ) ) ) - ( inf ( T , RR , < ) - ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) -> ( inf ( T , RR , < ) + ( s / 2 ) ) <_ u ) ) |
181 |
158 180
|
sylbid |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( abs ` ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) - ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) -> ( inf ( T , RR , < ) + ( s / 2 ) ) <_ u ) ) |
182 |
138 181
|
jad |
|- ( ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) /\ u e. T ) -> ( ( ( abs ` ( u - inf ( T , RR , < ) ) ) < s -> ( abs ` ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) - ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) -> ( inf ( T , RR , < ) + ( s / 2 ) ) <_ u ) ) |
183 |
182
|
ralimdva |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> ( A. u e. T ( ( abs ` ( u - inf ( T , RR , < ) ) ) < s -> ( abs ` ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) - ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) -> A. u e. T ( inf ( T , RR , < ) + ( s / 2 ) ) <_ u ) ) |
184 |
66
|
ad2antrr |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> T =/= (/) ) |
185 |
81
|
ad2antrr |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> E. x e. RR A. w e. T x <_ w ) |
186 |
|
infregelb |
|- ( ( ( T C_ RR /\ T =/= (/) /\ E. x e. RR A. w e. T x <_ w ) /\ ( inf ( T , RR , < ) + ( s / 2 ) ) e. RR ) -> ( ( inf ( T , RR , < ) + ( s / 2 ) ) <_ inf ( T , RR , < ) <-> A. u e. T ( inf ( T , RR , < ) + ( s / 2 ) ) <_ u ) ) |
187 |
108 184 185 100 186
|
syl31anc |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> ( ( inf ( T , RR , < ) + ( s / 2 ) ) <_ inf ( T , RR , < ) <-> A. u e. T ( inf ( T , RR , < ) + ( s / 2 ) ) <_ u ) ) |
188 |
183 187
|
sylibrd |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> ( A. u e. T ( ( abs ` ( u - inf ( T , RR , < ) ) ) < s -> ( abs ` ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) - ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) -> ( inf ( T , RR , < ) + ( s / 2 ) ) <_ inf ( T , RR , < ) ) ) |
189 |
107 188
|
syld |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> ( A. u e. CC ( ( abs ` ( u - inf ( T , RR , < ) ) ) < s -> ( abs ` ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) - ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) -> ( inf ( T , RR , < ) + ( s / 2 ) ) <_ inf ( T , RR , < ) ) ) |
190 |
102 189
|
mtod |
|- ( ( ( ph /\ 0 < inf ( T , RR , < ) ) /\ s e. RR+ ) -> -. A. u e. CC ( ( abs ` ( u - inf ( T , RR , < ) ) ) < s -> ( abs ` ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) - ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) |
191 |
190
|
nrexdv |
|- ( ( ph /\ 0 < inf ( T , RR , < ) ) -> -. E. s e. RR+ A. u e. CC ( ( abs ` ( u - inf ( T , RR , < ) ) ) < s -> ( abs ` ( ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` u ) - ( ( p e. CC |-> ( p - ( C x. ( p ^ 3 ) ) ) ) ` inf ( T , RR , < ) ) ) ) < ( C x. ( inf ( T , RR , < ) ^ 3 ) ) ) ) |
192 |
94 191
|
pm2.65da |
|- ( ph -> -. 0 < inf ( T , RR , < ) ) |
193 |
192
|
adantr |
|- ( ( ph /\ s e. RR+ ) -> -. 0 < inf ( T , RR , < ) ) |
194 |
32
|
adantr |
|- ( ( ph /\ s e. RR+ ) -> T C_ RR ) |
195 |
66
|
adantr |
|- ( ( ph /\ s e. RR+ ) -> T =/= (/) ) |
196 |
81
|
adantr |
|- ( ( ph /\ s e. RR+ ) -> E. x e. RR A. w e. T x <_ w ) |
197 |
131
|
adantl |
|- ( ( ph /\ s e. RR+ ) -> s e. RR ) |
198 |
|
infregelb |
|- ( ( ( T C_ RR /\ T =/= (/) /\ E. x e. RR A. w e. T x <_ w ) /\ s e. RR ) -> ( s <_ inf ( T , RR , < ) <-> A. w e. T s <_ w ) ) |
199 |
194 195 196 197 198
|
syl31anc |
|- ( ( ph /\ s e. RR+ ) -> ( s <_ inf ( T , RR , < ) <-> A. w e. T s <_ w ) ) |
200 |
4
|
raleqi |
|- ( A. w e. T s <_ w <-> A. w e. { t e. ( 0 [,] A ) | E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t } s <_ w ) |
201 |
|
breq2 |
|- ( w = t -> ( s <_ w <-> s <_ t ) ) |
202 |
201
|
ralrab2 |
|- ( A. w e. { t e. ( 0 [,] A ) | E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t } s <_ w <-> A. t e. ( 0 [,] A ) ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t -> s <_ t ) ) |
203 |
200 202
|
bitri |
|- ( A. w e. T s <_ w <-> A. t e. ( 0 [,] A ) ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t -> s <_ t ) ) |
204 |
199 203
|
bitrdi |
|- ( ( ph /\ s e. RR+ ) -> ( s <_ inf ( T , RR , < ) <-> A. t e. ( 0 [,] A ) ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t -> s <_ t ) ) ) |
205 |
|
rpgt0 |
|- ( s e. RR+ -> 0 < s ) |
206 |
205
|
adantl |
|- ( ( ph /\ s e. RR+ ) -> 0 < s ) |
207 |
83
|
adantr |
|- ( ( ph /\ s e. RR+ ) -> inf ( T , RR , < ) e. RR ) |
208 |
|
ltletr |
|- ( ( 0 e. RR /\ s e. RR /\ inf ( T , RR , < ) e. RR ) -> ( ( 0 < s /\ s <_ inf ( T , RR , < ) ) -> 0 < inf ( T , RR , < ) ) ) |
209 |
28 197 207 208
|
mp3an2i |
|- ( ( ph /\ s e. RR+ ) -> ( ( 0 < s /\ s <_ inf ( T , RR , < ) ) -> 0 < inf ( T , RR , < ) ) ) |
210 |
206 209
|
mpand |
|- ( ( ph /\ s e. RR+ ) -> ( s <_ inf ( T , RR , < ) -> 0 < inf ( T , RR , < ) ) ) |
211 |
204 210
|
sylbird |
|- ( ( ph /\ s e. RR+ ) -> ( A. t e. ( 0 [,] A ) ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t -> s <_ t ) -> 0 < inf ( T , RR , < ) ) ) |
212 |
193 211
|
mtod |
|- ( ( ph /\ s e. RR+ ) -> -. A. t e. ( 0 [,] A ) ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t -> s <_ t ) ) |
213 |
|
rexanali |
|- ( E. t e. ( 0 [,] A ) ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t /\ -. s <_ t ) <-> -. A. t e. ( 0 [,] A ) ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t -> s <_ t ) ) |
214 |
212 213
|
sylibr |
|- ( ( ph /\ s e. RR+ ) -> E. t e. ( 0 [,] A ) ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t /\ -. s <_ t ) ) |
215 |
|
fveq2 |
|- ( z = x -> ( R ` z ) = ( R ` x ) ) |
216 |
|
id |
|- ( z = x -> z = x ) |
217 |
215 216
|
oveq12d |
|- ( z = x -> ( ( R ` z ) / z ) = ( ( R ` x ) / x ) ) |
218 |
217
|
fveq2d |
|- ( z = x -> ( abs ` ( ( R ` z ) / z ) ) = ( abs ` ( ( R ` x ) / x ) ) ) |
219 |
218
|
breq1d |
|- ( z = x -> ( ( abs ` ( ( R ` z ) / z ) ) <_ t <-> ( abs ` ( ( R ` x ) / x ) ) <_ t ) ) |
220 |
219
|
cbvralvw |
|- ( A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t <-> A. x e. ( y [,) +oo ) ( abs ` ( ( R ` x ) / x ) ) <_ t ) |
221 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
222 |
221
|
ad2antll |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> x e. RR ) |
223 |
|
simprl |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> y <_ x ) |
224 |
|
simplr |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> y e. RR+ ) |
225 |
224
|
rpred |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> y e. RR ) |
226 |
|
elicopnf |
|- ( y e. RR -> ( x e. ( y [,) +oo ) <-> ( x e. RR /\ y <_ x ) ) ) |
227 |
225 226
|
syl |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( x e. ( y [,) +oo ) <-> ( x e. RR /\ y <_ x ) ) ) |
228 |
222 223 227
|
mpbir2and |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> x e. ( y [,) +oo ) ) |
229 |
1
|
pntrval |
|- ( x e. RR+ -> ( R ` x ) = ( ( psi ` x ) - x ) ) |
230 |
229
|
ad2antll |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( R ` x ) = ( ( psi ` x ) - x ) ) |
231 |
230
|
oveq1d |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( ( R ` x ) / x ) = ( ( ( psi ` x ) - x ) / x ) ) |
232 |
|
chpcl |
|- ( x e. RR -> ( psi ` x ) e. RR ) |
233 |
222 232
|
syl |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( psi ` x ) e. RR ) |
234 |
233
|
recnd |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( psi ` x ) e. CC ) |
235 |
|
rpcn |
|- ( x e. RR+ -> x e. CC ) |
236 |
235
|
ad2antll |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> x e. CC ) |
237 |
|
rpne0 |
|- ( x e. RR+ -> x =/= 0 ) |
238 |
237
|
ad2antll |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> x =/= 0 ) |
239 |
234 236 236 238
|
divsubdird |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( ( ( psi ` x ) - x ) / x ) = ( ( ( psi ` x ) / x ) - ( x / x ) ) ) |
240 |
236 238
|
dividd |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( x / x ) = 1 ) |
241 |
240
|
oveq2d |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( ( ( psi ` x ) / x ) - ( x / x ) ) = ( ( ( psi ` x ) / x ) - 1 ) ) |
242 |
231 239 241
|
3eqtrrd |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( ( ( psi ` x ) / x ) - 1 ) = ( ( R ` x ) / x ) ) |
243 |
242
|
fveq2d |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) = ( abs ` ( ( R ` x ) / x ) ) ) |
244 |
243
|
breq1d |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) <_ t <-> ( abs ` ( ( R ` x ) / x ) ) <_ t ) ) |
245 |
|
simprr |
|- ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) -> -. s <_ t ) |
246 |
245
|
ad2antrr |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> -. s <_ t ) |
247 |
31
|
ad2antrr |
|- ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) -> ( 0 [,] A ) C_ RR ) |
248 |
247
|
ad2antrr |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( 0 [,] A ) C_ RR ) |
249 |
|
simplrl |
|- ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) -> t e. ( 0 [,] A ) ) |
250 |
249
|
adantr |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> t e. ( 0 [,] A ) ) |
251 |
248 250
|
sseldd |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> t e. RR ) |
252 |
|
simp-4r |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> s e. RR+ ) |
253 |
252
|
rpred |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> s e. RR ) |
254 |
251 253
|
ltnled |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( t < s <-> -. s <_ t ) ) |
255 |
246 254
|
mpbird |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> t < s ) |
256 |
221 232
|
syl |
|- ( x e. RR+ -> ( psi ` x ) e. RR ) |
257 |
|
rerpdivcl |
|- ( ( ( psi ` x ) e. RR /\ x e. RR+ ) -> ( ( psi ` x ) / x ) e. RR ) |
258 |
256 257
|
mpancom |
|- ( x e. RR+ -> ( ( psi ` x ) / x ) e. RR ) |
259 |
258
|
ad2antll |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( ( psi ` x ) / x ) e. RR ) |
260 |
|
resubcl |
|- ( ( ( ( psi ` x ) / x ) e. RR /\ 1 e. RR ) -> ( ( ( psi ` x ) / x ) - 1 ) e. RR ) |
261 |
259 45 260
|
sylancl |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( ( ( psi ` x ) / x ) - 1 ) e. RR ) |
262 |
261
|
recnd |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( ( ( psi ` x ) / x ) - 1 ) e. CC ) |
263 |
262
|
abscld |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) e. RR ) |
264 |
|
lelttr |
|- ( ( ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) e. RR /\ t e. RR /\ s e. RR ) -> ( ( ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) <_ t /\ t < s ) -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) |
265 |
263 251 253 264
|
syl3anc |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( ( ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) <_ t /\ t < s ) -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) |
266 |
255 265
|
mpan2d |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) <_ t -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) |
267 |
244 266
|
sylbird |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( ( abs ` ( ( R ` x ) / x ) ) <_ t -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) |
268 |
228 267
|
embantd |
|- ( ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) /\ ( y <_ x /\ x e. RR+ ) ) -> ( ( x e. ( y [,) +oo ) -> ( abs ` ( ( R ` x ) / x ) ) <_ t ) -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) |
269 |
268
|
exp32 |
|- ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) -> ( y <_ x -> ( x e. RR+ -> ( ( x e. ( y [,) +oo ) -> ( abs ` ( ( R ` x ) / x ) ) <_ t ) -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) ) ) |
270 |
269
|
com24 |
|- ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) -> ( ( x e. ( y [,) +oo ) -> ( abs ` ( ( R ` x ) / x ) ) <_ t ) -> ( x e. RR+ -> ( y <_ x -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) ) ) |
271 |
270
|
ralimdv2 |
|- ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) -> ( A. x e. ( y [,) +oo ) ( abs ` ( ( R ` x ) / x ) ) <_ t -> A. x e. RR+ ( y <_ x -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) ) |
272 |
220 271
|
syl5bi |
|- ( ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) /\ y e. RR+ ) -> ( A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t -> A. x e. RR+ ( y <_ x -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) ) |
273 |
272
|
reximdva |
|- ( ( ( ph /\ s e. RR+ ) /\ ( t e. ( 0 [,] A ) /\ -. s <_ t ) ) -> ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t -> E. y e. RR+ A. x e. RR+ ( y <_ x -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) ) |
274 |
273
|
anassrs |
|- ( ( ( ( ph /\ s e. RR+ ) /\ t e. ( 0 [,] A ) ) /\ -. s <_ t ) -> ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t -> E. y e. RR+ A. x e. RR+ ( y <_ x -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) ) |
275 |
274
|
impancom |
|- ( ( ( ( ph /\ s e. RR+ ) /\ t e. ( 0 [,] A ) ) /\ E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t ) -> ( -. s <_ t -> E. y e. RR+ A. x e. RR+ ( y <_ x -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) ) |
276 |
275
|
expimpd |
|- ( ( ( ph /\ s e. RR+ ) /\ t e. ( 0 [,] A ) ) -> ( ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t /\ -. s <_ t ) -> E. y e. RR+ A. x e. RR+ ( y <_ x -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) ) |
277 |
276
|
rexlimdva |
|- ( ( ph /\ s e. RR+ ) -> ( E. t e. ( 0 [,] A ) ( E. y e. RR+ A. z e. ( y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ t /\ -. s <_ t ) -> E. y e. RR+ A. x e. RR+ ( y <_ x -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) ) |
278 |
214 277
|
mpd |
|- ( ( ph /\ s e. RR+ ) -> E. y e. RR+ A. x e. RR+ ( y <_ x -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) |
279 |
|
ssrexv |
|- ( RR+ C_ RR -> ( E. y e. RR+ A. x e. RR+ ( y <_ x -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) -> E. y e. RR A. x e. RR+ ( y <_ x -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) ) |
280 |
7 278 279
|
mpsyl |
|- ( ( ph /\ s e. RR+ ) -> E. y e. RR A. x e. RR+ ( y <_ x -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) |
281 |
280
|
ralrimiva |
|- ( ph -> A. s e. RR+ E. y e. RR A. x e. RR+ ( y <_ x -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) |
282 |
258
|
recnd |
|- ( x e. RR+ -> ( ( psi ` x ) / x ) e. CC ) |
283 |
282
|
rgen |
|- A. x e. RR+ ( ( psi ` x ) / x ) e. CC |
284 |
283
|
a1i |
|- ( ph -> A. x e. RR+ ( ( psi ` x ) / x ) e. CC ) |
285 |
7
|
a1i |
|- ( ph -> RR+ C_ RR ) |
286 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
287 |
284 285 286
|
rlim2 |
|- ( ph -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) ~~>r 1 <-> A. s e. RR+ E. y e. RR A. x e. RR+ ( y <_ x -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) < s ) ) ) |
288 |
281 287
|
mpbird |
|- ( ph -> ( x e. RR+ |-> ( ( psi ` x ) / x ) ) ~~>r 1 ) |