Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem1.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
2 |
|
pntlem1.a |
|- ( ph -> A e. RR+ ) |
3 |
|
pntlem1.b |
|- ( ph -> B e. RR+ ) |
4 |
|
pntlem1.l |
|- ( ph -> L e. ( 0 (,) 1 ) ) |
5 |
|
pntlem1.d |
|- D = ( A + 1 ) |
6 |
|
pntlem1.f |
|- F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) |
7 |
|
pntlem1.u |
|- ( ph -> U e. RR+ ) |
8 |
|
pntlem1.u2 |
|- ( ph -> U <_ A ) |
9 |
|
pntlem1.e |
|- E = ( U / D ) |
10 |
|
pntlem1.k |
|- K = ( exp ` ( B / E ) ) |
11 |
|
pntlem1.y |
|- ( ph -> ( Y e. RR+ /\ 1 <_ Y ) ) |
12 |
|
pntlem1.x |
|- ( ph -> ( X e. RR+ /\ Y < X ) ) |
13 |
|
pntlem1.c |
|- ( ph -> C e. RR+ ) |
14 |
|
pntlem1.w |
|- W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) |
15 |
11
|
simpld |
|- ( ph -> Y e. RR+ ) |
16 |
|
4nn |
|- 4 e. NN |
17 |
|
nnrp |
|- ( 4 e. NN -> 4 e. RR+ ) |
18 |
16 17
|
ax-mp |
|- 4 e. RR+ |
19 |
1 2 3 4 5 6
|
pntlemd |
|- ( ph -> ( L e. RR+ /\ D e. RR+ /\ F e. RR+ ) ) |
20 |
19
|
simp1d |
|- ( ph -> L e. RR+ ) |
21 |
1 2 3 4 5 6 7 8 9 10
|
pntlemc |
|- ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) |
22 |
21
|
simp1d |
|- ( ph -> E e. RR+ ) |
23 |
20 22
|
rpmulcld |
|- ( ph -> ( L x. E ) e. RR+ ) |
24 |
|
rpdivcl |
|- ( ( 4 e. RR+ /\ ( L x. E ) e. RR+ ) -> ( 4 / ( L x. E ) ) e. RR+ ) |
25 |
18 23 24
|
sylancr |
|- ( ph -> ( 4 / ( L x. E ) ) e. RR+ ) |
26 |
15 25
|
rpaddcld |
|- ( ph -> ( Y + ( 4 / ( L x. E ) ) ) e. RR+ ) |
27 |
|
2z |
|- 2 e. ZZ |
28 |
|
rpexpcl |
|- ( ( ( Y + ( 4 / ( L x. E ) ) ) e. RR+ /\ 2 e. ZZ ) -> ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) e. RR+ ) |
29 |
26 27 28
|
sylancl |
|- ( ph -> ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) e. RR+ ) |
30 |
12
|
simpld |
|- ( ph -> X e. RR+ ) |
31 |
21
|
simp2d |
|- ( ph -> K e. RR+ ) |
32 |
|
rpexpcl |
|- ( ( K e. RR+ /\ 2 e. ZZ ) -> ( K ^ 2 ) e. RR+ ) |
33 |
31 27 32
|
sylancl |
|- ( ph -> ( K ^ 2 ) e. RR+ ) |
34 |
30 33
|
rpmulcld |
|- ( ph -> ( X x. ( K ^ 2 ) ) e. RR+ ) |
35 |
|
4z |
|- 4 e. ZZ |
36 |
|
rpexpcl |
|- ( ( ( X x. ( K ^ 2 ) ) e. RR+ /\ 4 e. ZZ ) -> ( ( X x. ( K ^ 2 ) ) ^ 4 ) e. RR+ ) |
37 |
34 35 36
|
sylancl |
|- ( ph -> ( ( X x. ( K ^ 2 ) ) ^ 4 ) e. RR+ ) |
38 |
|
3nn0 |
|- 3 e. NN0 |
39 |
|
2nn |
|- 2 e. NN |
40 |
38 39
|
decnncl |
|- ; 3 2 e. NN |
41 |
|
nnrp |
|- ( ; 3 2 e. NN -> ; 3 2 e. RR+ ) |
42 |
40 41
|
ax-mp |
|- ; 3 2 e. RR+ |
43 |
|
rpmulcl |
|- ( ( ; 3 2 e. RR+ /\ B e. RR+ ) -> ( ; 3 2 x. B ) e. RR+ ) |
44 |
42 3 43
|
sylancr |
|- ( ph -> ( ; 3 2 x. B ) e. RR+ ) |
45 |
21
|
simp3d |
|- ( ph -> ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) |
46 |
45
|
simp3d |
|- ( ph -> ( U - E ) e. RR+ ) |
47 |
|
rpexpcl |
|- ( ( E e. RR+ /\ 2 e. ZZ ) -> ( E ^ 2 ) e. RR+ ) |
48 |
22 27 47
|
sylancl |
|- ( ph -> ( E ^ 2 ) e. RR+ ) |
49 |
20 48
|
rpmulcld |
|- ( ph -> ( L x. ( E ^ 2 ) ) e. RR+ ) |
50 |
46 49
|
rpmulcld |
|- ( ph -> ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) e. RR+ ) |
51 |
44 50
|
rpdivcld |
|- ( ph -> ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) e. RR+ ) |
52 |
|
3rp |
|- 3 e. RR+ |
53 |
|
rpmulcl |
|- ( ( U e. RR+ /\ 3 e. RR+ ) -> ( U x. 3 ) e. RR+ ) |
54 |
7 52 53
|
sylancl |
|- ( ph -> ( U x. 3 ) e. RR+ ) |
55 |
54 13
|
rpaddcld |
|- ( ph -> ( ( U x. 3 ) + C ) e. RR+ ) |
56 |
51 55
|
rpmulcld |
|- ( ph -> ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) e. RR+ ) |
57 |
56
|
rpred |
|- ( ph -> ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) e. RR ) |
58 |
57
|
rpefcld |
|- ( ph -> ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) e. RR+ ) |
59 |
37 58
|
rpaddcld |
|- ( ph -> ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) e. RR+ ) |
60 |
29 59
|
rpaddcld |
|- ( ph -> ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) e. RR+ ) |
61 |
14 60
|
eqeltrid |
|- ( ph -> W e. RR+ ) |