Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem1.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
2 |
|
pntlem1.a |
|- ( ph -> A e. RR+ ) |
3 |
|
pntlem1.b |
|- ( ph -> B e. RR+ ) |
4 |
|
pntlem1.l |
|- ( ph -> L e. ( 0 (,) 1 ) ) |
5 |
|
pntlem1.d |
|- D = ( A + 1 ) |
6 |
|
pntlem1.f |
|- F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) |
7 |
|
pntlem1.u |
|- ( ph -> U e. RR+ ) |
8 |
|
pntlem1.u2 |
|- ( ph -> U <_ A ) |
9 |
|
pntlem1.e |
|- E = ( U / D ) |
10 |
|
pntlem1.k |
|- K = ( exp ` ( B / E ) ) |
11 |
1 2 3 4 5 6
|
pntlemd |
|- ( ph -> ( L e. RR+ /\ D e. RR+ /\ F e. RR+ ) ) |
12 |
11
|
simp2d |
|- ( ph -> D e. RR+ ) |
13 |
7 12
|
rpdivcld |
|- ( ph -> ( U / D ) e. RR+ ) |
14 |
9 13
|
eqeltrid |
|- ( ph -> E e. RR+ ) |
15 |
3 14
|
rpdivcld |
|- ( ph -> ( B / E ) e. RR+ ) |
16 |
15
|
rpred |
|- ( ph -> ( B / E ) e. RR ) |
17 |
16
|
rpefcld |
|- ( ph -> ( exp ` ( B / E ) ) e. RR+ ) |
18 |
10 17
|
eqeltrid |
|- ( ph -> K e. RR+ ) |
19 |
14
|
rpred |
|- ( ph -> E e. RR ) |
20 |
14
|
rpgt0d |
|- ( ph -> 0 < E ) |
21 |
7
|
rpred |
|- ( ph -> U e. RR ) |
22 |
2
|
rpred |
|- ( ph -> A e. RR ) |
23 |
12
|
rpred |
|- ( ph -> D e. RR ) |
24 |
22
|
ltp1d |
|- ( ph -> A < ( A + 1 ) ) |
25 |
24 5
|
breqtrrdi |
|- ( ph -> A < D ) |
26 |
21 22 23 8 25
|
lelttrd |
|- ( ph -> U < D ) |
27 |
12
|
rpcnd |
|- ( ph -> D e. CC ) |
28 |
27
|
mulid1d |
|- ( ph -> ( D x. 1 ) = D ) |
29 |
26 28
|
breqtrrd |
|- ( ph -> U < ( D x. 1 ) ) |
30 |
|
1red |
|- ( ph -> 1 e. RR ) |
31 |
21 30 12
|
ltdivmuld |
|- ( ph -> ( ( U / D ) < 1 <-> U < ( D x. 1 ) ) ) |
32 |
29 31
|
mpbird |
|- ( ph -> ( U / D ) < 1 ) |
33 |
9 32
|
eqbrtrid |
|- ( ph -> E < 1 ) |
34 |
|
0xr |
|- 0 e. RR* |
35 |
|
1xr |
|- 1 e. RR* |
36 |
|
elioo2 |
|- ( ( 0 e. RR* /\ 1 e. RR* ) -> ( E e. ( 0 (,) 1 ) <-> ( E e. RR /\ 0 < E /\ E < 1 ) ) ) |
37 |
34 35 36
|
mp2an |
|- ( E e. ( 0 (,) 1 ) <-> ( E e. RR /\ 0 < E /\ E < 1 ) ) |
38 |
19 20 33 37
|
syl3anbrc |
|- ( ph -> E e. ( 0 (,) 1 ) ) |
39 |
|
efgt1 |
|- ( ( B / E ) e. RR+ -> 1 < ( exp ` ( B / E ) ) ) |
40 |
15 39
|
syl |
|- ( ph -> 1 < ( exp ` ( B / E ) ) ) |
41 |
40 10
|
breqtrrdi |
|- ( ph -> 1 < K ) |
42 |
|
1re |
|- 1 e. RR |
43 |
|
ltaddrp |
|- ( ( 1 e. RR /\ A e. RR+ ) -> 1 < ( 1 + A ) ) |
44 |
42 2 43
|
sylancr |
|- ( ph -> 1 < ( 1 + A ) ) |
45 |
7
|
rpcnne0d |
|- ( ph -> ( U e. CC /\ U =/= 0 ) ) |
46 |
|
divid |
|- ( ( U e. CC /\ U =/= 0 ) -> ( U / U ) = 1 ) |
47 |
45 46
|
syl |
|- ( ph -> ( U / U ) = 1 ) |
48 |
2
|
rpcnd |
|- ( ph -> A e. CC ) |
49 |
|
ax-1cn |
|- 1 e. CC |
50 |
|
addcom |
|- ( ( A e. CC /\ 1 e. CC ) -> ( A + 1 ) = ( 1 + A ) ) |
51 |
48 49 50
|
sylancl |
|- ( ph -> ( A + 1 ) = ( 1 + A ) ) |
52 |
5 51
|
eqtrid |
|- ( ph -> D = ( 1 + A ) ) |
53 |
44 47 52
|
3brtr4d |
|- ( ph -> ( U / U ) < D ) |
54 |
21 7 12 53
|
ltdiv23d |
|- ( ph -> ( U / D ) < U ) |
55 |
9 54
|
eqbrtrid |
|- ( ph -> E < U ) |
56 |
|
difrp |
|- ( ( E e. RR /\ U e. RR ) -> ( E < U <-> ( U - E ) e. RR+ ) ) |
57 |
19 21 56
|
syl2anc |
|- ( ph -> ( E < U <-> ( U - E ) e. RR+ ) ) |
58 |
55 57
|
mpbid |
|- ( ph -> ( U - E ) e. RR+ ) |
59 |
38 41 58
|
3jca |
|- ( ph -> ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) |
60 |
14 18 59
|
3jca |
|- ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) |