Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem1.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
2 |
|
pntlem1.a |
|- ( ph -> A e. RR+ ) |
3 |
|
pntlem1.b |
|- ( ph -> B e. RR+ ) |
4 |
|
pntlem1.l |
|- ( ph -> L e. ( 0 (,) 1 ) ) |
5 |
|
pntlem1.d |
|- D = ( A + 1 ) |
6 |
|
pntlem1.f |
|- F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) |
7 |
|
pntlem1.u |
|- ( ph -> U e. RR+ ) |
8 |
|
pntlem1.u2 |
|- ( ph -> U <_ A ) |
9 |
|
pntlem1.e |
|- E = ( U / D ) |
10 |
|
pntlem1.k |
|- K = ( exp ` ( B / E ) ) |
11 |
|
pntlem1.y |
|- ( ph -> ( Y e. RR+ /\ 1 <_ Y ) ) |
12 |
|
pntlem1.x |
|- ( ph -> ( X e. RR+ /\ Y < X ) ) |
13 |
|
pntlem1.c |
|- ( ph -> C e. RR+ ) |
14 |
|
pntlem1.w |
|- W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) |
15 |
|
pntlem1.z |
|- ( ph -> Z e. ( W [,) +oo ) ) |
16 |
|
pntlem1.m |
|- M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) |
17 |
|
pntlem1.n |
|- N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) |
18 |
|
pntlem1.U |
|- ( ph -> A. z e. ( Y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ U ) |
19 |
|
pntlem1.K |
|- ( ph -> A. y e. ( X (,) +oo ) E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) |
20 |
|
pntlem1.o |
|- O = ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / ( K ^ J ) ) ) ) |
21 |
|
breq2 |
|- ( z = x -> ( y < z <-> y < x ) ) |
22 |
|
oveq2 |
|- ( z = x -> ( ( 1 + ( L x. E ) ) x. z ) = ( ( 1 + ( L x. E ) ) x. x ) ) |
23 |
22
|
breq1d |
|- ( z = x -> ( ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) <-> ( ( 1 + ( L x. E ) ) x. x ) < ( K x. y ) ) ) |
24 |
21 23
|
anbi12d |
|- ( z = x -> ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) <-> ( y < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. y ) ) ) ) |
25 |
|
id |
|- ( z = x -> z = x ) |
26 |
25 22
|
oveq12d |
|- ( z = x -> ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) = ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ) |
27 |
26
|
raleqdv |
|- ( z = x -> ( A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E <-> A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) |
28 |
24 27
|
anbi12d |
|- ( z = x -> ( ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) <-> ( ( y < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. y ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) |
29 |
28
|
cbvrexvw |
|- ( E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) <-> E. x e. RR+ ( ( y < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. y ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) |
30 |
|
breq1 |
|- ( y = ( K ^ J ) -> ( y < x <-> ( K ^ J ) < x ) ) |
31 |
|
oveq2 |
|- ( y = ( K ^ J ) -> ( K x. y ) = ( K x. ( K ^ J ) ) ) |
32 |
31
|
breq2d |
|- ( y = ( K ^ J ) -> ( ( ( 1 + ( L x. E ) ) x. x ) < ( K x. y ) <-> ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) ) |
33 |
30 32
|
anbi12d |
|- ( y = ( K ^ J ) -> ( ( y < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. y ) ) <-> ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) ) ) |
34 |
33
|
anbi1d |
|- ( y = ( K ^ J ) -> ( ( ( y < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. y ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) <-> ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) |
35 |
34
|
rexbidv |
|- ( y = ( K ^ J ) -> ( E. x e. RR+ ( ( y < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. y ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) <-> E. x e. RR+ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) |
36 |
29 35
|
syl5bb |
|- ( y = ( K ^ J ) -> ( E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) <-> E. x e. RR+ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) |
37 |
19
|
adantr |
|- ( ( ph /\ J e. ( M ..^ N ) ) -> A. y e. ( X (,) +oo ) E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) |
38 |
1 2 3 4 5 6 7 8 9 10
|
pntlemc |
|- ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) |
39 |
38
|
simp2d |
|- ( ph -> K e. RR+ ) |
40 |
|
elfzoelz |
|- ( J e. ( M ..^ N ) -> J e. ZZ ) |
41 |
|
rpexpcl |
|- ( ( K e. RR+ /\ J e. ZZ ) -> ( K ^ J ) e. RR+ ) |
42 |
39 40 41
|
syl2an |
|- ( ( ph /\ J e. ( M ..^ N ) ) -> ( K ^ J ) e. RR+ ) |
43 |
42
|
rpred |
|- ( ( ph /\ J e. ( M ..^ N ) ) -> ( K ^ J ) e. RR ) |
44 |
|
elfzofz |
|- ( J e. ( M ..^ N ) -> J e. ( M ... N ) ) |
45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pntlemh |
|- ( ( ph /\ J e. ( M ... N ) ) -> ( X < ( K ^ J ) /\ ( K ^ J ) <_ ( sqrt ` Z ) ) ) |
46 |
44 45
|
sylan2 |
|- ( ( ph /\ J e. ( M ..^ N ) ) -> ( X < ( K ^ J ) /\ ( K ^ J ) <_ ( sqrt ` Z ) ) ) |
47 |
46
|
simpld |
|- ( ( ph /\ J e. ( M ..^ N ) ) -> X < ( K ^ J ) ) |
48 |
12
|
simpld |
|- ( ph -> X e. RR+ ) |
49 |
48
|
adantr |
|- ( ( ph /\ J e. ( M ..^ N ) ) -> X e. RR+ ) |
50 |
|
rpxr |
|- ( X e. RR+ -> X e. RR* ) |
51 |
|
elioopnf |
|- ( X e. RR* -> ( ( K ^ J ) e. ( X (,) +oo ) <-> ( ( K ^ J ) e. RR /\ X < ( K ^ J ) ) ) ) |
52 |
49 50 51
|
3syl |
|- ( ( ph /\ J e. ( M ..^ N ) ) -> ( ( K ^ J ) e. ( X (,) +oo ) <-> ( ( K ^ J ) e. RR /\ X < ( K ^ J ) ) ) ) |
53 |
43 47 52
|
mpbir2and |
|- ( ( ph /\ J e. ( M ..^ N ) ) -> ( K ^ J ) e. ( X (,) +oo ) ) |
54 |
36 37 53
|
rspcdva |
|- ( ( ph /\ J e. ( M ..^ N ) ) -> E. x e. RR+ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) |
55 |
2
|
ad2antrr |
|- ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> A e. RR+ ) |
56 |
3
|
ad2antrr |
|- ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> B e. RR+ ) |
57 |
4
|
ad2antrr |
|- ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> L e. ( 0 (,) 1 ) ) |
58 |
7
|
ad2antrr |
|- ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> U e. RR+ ) |
59 |
8
|
ad2antrr |
|- ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> U <_ A ) |
60 |
11
|
ad2antrr |
|- ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> ( Y e. RR+ /\ 1 <_ Y ) ) |
61 |
12
|
ad2antrr |
|- ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> ( X e. RR+ /\ Y < X ) ) |
62 |
13
|
ad2antrr |
|- ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> C e. RR+ ) |
63 |
15
|
ad2antrr |
|- ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> Z e. ( W [,) +oo ) ) |
64 |
18
|
ad2antrr |
|- ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> A. z e. ( Y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ U ) |
65 |
19
|
ad2antrr |
|- ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> A. y e. ( X (,) +oo ) E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) |
66 |
|
simprl |
|- ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> x e. RR+ ) |
67 |
|
simprr |
|- ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) |
68 |
|
simplr |
|- ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> J e. ( M ..^ N ) ) |
69 |
|
eqid |
|- ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. x ) ) ) + 1 ) ... ( |_ ` ( Z / x ) ) ) = ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. x ) ) ) + 1 ) ... ( |_ ` ( Z / x ) ) ) |
70 |
1 55 56 57 5 6 58 59 9 10 60 61 62 14 63 16 17 64 65 20 66 67 68 69
|
pntlemj |
|- ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> ( ( U - E ) x. ( ( ( L x. E ) / 8 ) x. ( log ` Z ) ) ) <_ sum_ n e. O ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) |
71 |
54 70
|
rexlimddv |
|- ( ( ph /\ J e. ( M ..^ N ) ) -> ( ( U - E ) x. ( ( ( L x. E ) / 8 ) x. ( log ` Z ) ) ) <_ sum_ n e. O ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) |