Step |
Hyp |
Ref |
Expression |
1 |
|
pntsval.1 |
|- S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) |
2 |
|
pntrlog2bnd.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
3 |
|
pntrlog2bndlem3.1 |
|- ( ph -> A e. RR+ ) |
4 |
|
pntrlog2bndlem3.2 |
|- ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ A ) |
5 |
|
1red |
|- ( ph -> 1 e. RR ) |
6 |
3
|
rpred |
|- ( ph -> A e. RR ) |
7 |
6
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. RR ) |
8 |
|
fzfid |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
9 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
10 |
9
|
adantl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
11 |
10
|
nnred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR ) |
12 |
|
elioore |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
13 |
12
|
adantl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) |
14 |
|
1rp |
|- 1 e. RR+ |
15 |
14
|
a1i |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) |
16 |
|
1red |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
17 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
18 |
17
|
adantl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) |
19 |
18
|
simpld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) |
20 |
16 13 19
|
ltled |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) |
21 |
13 15 20
|
rpgecld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) |
22 |
21
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) |
23 |
10
|
nnrpd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
24 |
14
|
a1i |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR+ ) |
25 |
23 24
|
rpaddcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n + 1 ) e. RR+ ) |
26 |
22 25
|
rpdivcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / ( n + 1 ) ) e. RR+ ) |
27 |
2
|
pntrf |
|- R : RR+ --> RR |
28 |
27
|
ffvelrni |
|- ( ( x / ( n + 1 ) ) e. RR+ -> ( R ` ( x / ( n + 1 ) ) ) e. RR ) |
29 |
26 28
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / ( n + 1 ) ) ) e. RR ) |
30 |
29
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / ( n + 1 ) ) ) e. CC ) |
31 |
22 23
|
rpdivcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
32 |
27
|
ffvelrni |
|- ( ( x / n ) e. RR+ -> ( R ` ( x / n ) ) e. RR ) |
33 |
31 32
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. RR ) |
34 |
33
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. CC ) |
35 |
30 34
|
subcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) e. CC ) |
36 |
35
|
abscld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) e. RR ) |
37 |
11 36
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) e. RR ) |
38 |
8 37
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) e. RR ) |
39 |
13 19
|
rplogcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) |
40 |
21 39
|
rpmulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR+ ) |
41 |
38 40
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) |
42 |
|
ioossre |
|- ( 1 (,) +oo ) C_ RR |
43 |
3
|
rpcnd |
|- ( ph -> A e. CC ) |
44 |
|
o1const |
|- ( ( ( 1 (,) +oo ) C_ RR /\ A e. CC ) -> ( x e. ( 1 (,) +oo ) |-> A ) e. O(1) ) |
45 |
42 43 44
|
sylancr |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> A ) e. O(1) ) |
46 |
|
chpo1ubb |
|- E. c e. RR+ A. y e. RR+ ( psi ` y ) <_ ( c x. y ) |
47 |
|
simpl |
|- ( ( c e. RR+ /\ A. y e. RR+ ( psi ` y ) <_ ( c x. y ) ) -> c e. RR+ ) |
48 |
|
simpr |
|- ( ( c e. RR+ /\ A. y e. RR+ ( psi ` y ) <_ ( c x. y ) ) -> A. y e. RR+ ( psi ` y ) <_ ( c x. y ) ) |
49 |
1 2 47 48
|
pntrlog2bndlem2 |
|- ( ( c e. RR+ /\ A. y e. RR+ ( psi ` y ) <_ ( c x. y ) ) -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) |
50 |
49
|
rexlimiva |
|- ( E. c e. RR+ A. y e. RR+ ( psi ` y ) <_ ( c x. y ) -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) |
51 |
46 50
|
mp1i |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) |
52 |
7 41 45 51
|
o1mul2 |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) e. O(1) ) |
53 |
7 41
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. RR ) |
54 |
34
|
abscld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) e. RR ) |
55 |
30
|
abscld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) e. RR ) |
56 |
54 55
|
resubcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) e. RR ) |
57 |
1
|
pntsf |
|- S : RR --> RR |
58 |
57
|
ffvelrni |
|- ( n e. RR -> ( S ` n ) e. RR ) |
59 |
11 58
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( S ` n ) e. RR ) |
60 |
|
2re |
|- 2 e. RR |
61 |
60
|
a1i |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. RR ) |
62 |
23
|
relogcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) |
63 |
11 62
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( log ` n ) ) e. RR ) |
64 |
61 63
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( n x. ( log ` n ) ) ) e. RR ) |
65 |
59 64
|
resubcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) e. RR ) |
66 |
56 65
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. RR ) |
67 |
8 66
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. RR ) |
68 |
67 40
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) |
69 |
68
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. CC ) |
70 |
69
|
abscld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. RR ) |
71 |
53
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. CC ) |
72 |
71
|
abscld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) e. RR ) |
73 |
67
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. CC ) |
74 |
73
|
abscld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) e. RR ) |
75 |
7 38
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) e. RR ) |
76 |
66
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. CC ) |
77 |
76
|
abscld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) e. RR ) |
78 |
8 77
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) e. RR ) |
79 |
8 76
|
fsumabs |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) ) |
80 |
7
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A e. RR ) |
81 |
80 37
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A x. ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) e. RR ) |
82 |
56
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) e. CC ) |
83 |
82
|
abscld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) ) e. RR ) |
84 |
65
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) e. CC ) |
85 |
84
|
abscld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. RR ) |
86 |
80 11
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A x. n ) e. RR ) |
87 |
82
|
absge0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) ) ) |
88 |
84
|
absge0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) |
89 |
34 30
|
abs2difabsd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) ) <_ ( abs ` ( ( R ` ( x / n ) ) - ( R ` ( x / ( n + 1 ) ) ) ) ) ) |
90 |
34 30
|
abssubd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) - ( R ` ( x / ( n + 1 ) ) ) ) ) = ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) |
91 |
89 90
|
breqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) ) <_ ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) |
92 |
59
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( S ` n ) e. CC ) |
93 |
11
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) |
94 |
10
|
nnne0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) |
95 |
92 93 94
|
divcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` n ) / n ) e. CC ) |
96 |
|
2cnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. CC ) |
97 |
62
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. CC ) |
98 |
96 97
|
mulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( log ` n ) ) e. CC ) |
99 |
95 98
|
subcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) e. CC ) |
100 |
99 93
|
absmuld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) x. n ) ) = ( ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) x. ( abs ` n ) ) ) |
101 |
95 98 93
|
subdird |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) x. n ) = ( ( ( ( S ` n ) / n ) x. n ) - ( ( 2 x. ( log ` n ) ) x. n ) ) ) |
102 |
92 93 94
|
divcan1d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` n ) / n ) x. n ) = ( S ` n ) ) |
103 |
96 93 97
|
mul32d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. n ) x. ( log ` n ) ) = ( ( 2 x. ( log ` n ) ) x. n ) ) |
104 |
96 93 97
|
mulassd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. n ) x. ( log ` n ) ) = ( 2 x. ( n x. ( log ` n ) ) ) ) |
105 |
103 104
|
eqtr3d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. ( log ` n ) ) x. n ) = ( 2 x. ( n x. ( log ` n ) ) ) ) |
106 |
102 105
|
oveq12d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( S ` n ) / n ) x. n ) - ( ( 2 x. ( log ` n ) ) x. n ) ) = ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) |
107 |
101 106
|
eqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) x. n ) = ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) |
108 |
107
|
fveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) x. n ) ) = ( abs ` ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) |
109 |
23
|
rpge0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ n ) |
110 |
11 109
|
absidd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` n ) = n ) |
111 |
110
|
oveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) x. ( abs ` n ) ) = ( ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) x. n ) ) |
112 |
100 108 111
|
3eqtr3d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) = ( ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) x. n ) ) |
113 |
99
|
abscld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) e. RR ) |
114 |
|
fveq2 |
|- ( y = n -> ( S ` y ) = ( S ` n ) ) |
115 |
|
id |
|- ( y = n -> y = n ) |
116 |
114 115
|
oveq12d |
|- ( y = n -> ( ( S ` y ) / y ) = ( ( S ` n ) / n ) ) |
117 |
|
fveq2 |
|- ( y = n -> ( log ` y ) = ( log ` n ) ) |
118 |
117
|
oveq2d |
|- ( y = n -> ( 2 x. ( log ` y ) ) = ( 2 x. ( log ` n ) ) ) |
119 |
116 118
|
oveq12d |
|- ( y = n -> ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) = ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) |
120 |
119
|
fveq2d |
|- ( y = n -> ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) = ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) ) |
121 |
120
|
breq1d |
|- ( y = n -> ( ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ A <-> ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) <_ A ) ) |
122 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ A ) |
123 |
10
|
nnge1d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ n ) |
124 |
|
1re |
|- 1 e. RR |
125 |
|
elicopnf |
|- ( 1 e. RR -> ( n e. ( 1 [,) +oo ) <-> ( n e. RR /\ 1 <_ n ) ) ) |
126 |
124 125
|
ax-mp |
|- ( n e. ( 1 [,) +oo ) <-> ( n e. RR /\ 1 <_ n ) ) |
127 |
11 123 126
|
sylanbrc |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. ( 1 [,) +oo ) ) |
128 |
121 122 127
|
rspcdva |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) <_ A ) |
129 |
113 80 11 109 128
|
lemul1ad |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( ( S ` n ) / n ) - ( 2 x. ( log ` n ) ) ) ) x. n ) <_ ( A x. n ) ) |
130 |
112 129
|
eqbrtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) <_ ( A x. n ) ) |
131 |
83 36 85 86 87 88 91 130
|
lemul12ad |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) ) x. ( abs ` ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) <_ ( ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) x. ( A x. n ) ) ) |
132 |
82 84
|
absmuld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) = ( ( abs ` ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) ) x. ( abs ` ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) ) |
133 |
43
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A e. CC ) |
134 |
36
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) e. CC ) |
135 |
133 93 134
|
mulassd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( A x. n ) x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) = ( A x. ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) ) |
136 |
133 93
|
mulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A x. n ) e. CC ) |
137 |
136 134
|
mulcomd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( A x. n ) x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) = ( ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) x. ( A x. n ) ) ) |
138 |
135 137
|
eqtr3d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A x. ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) = ( ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) x. ( A x. n ) ) ) |
139 |
131 132 138
|
3brtr4d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) <_ ( A x. ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) ) |
140 |
8 77 81 139
|
fsumle |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( A x. ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) ) |
141 |
43
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. CC ) |
142 |
37
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) e. CC ) |
143 |
8 141 142
|
fsummulc2 |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( A x. ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) ) |
144 |
140 143
|
breqtrrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) <_ ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) ) |
145 |
74 78 75 79 144
|
letrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) <_ ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) ) |
146 |
74 75 40 145
|
lediv1dd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) <_ ( ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) |
147 |
40
|
rpcnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. CC ) |
148 |
40
|
rpne0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) =/= 0 ) |
149 |
73 147 148
|
absdivd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) = ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( abs ` ( x x. ( log ` x ) ) ) ) ) |
150 |
40
|
rpred |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR ) |
151 |
40
|
rpge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( x x. ( log ` x ) ) ) |
152 |
150 151
|
absidd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( x x. ( log ` x ) ) ) = ( x x. ( log ` x ) ) ) |
153 |
152
|
oveq2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( abs ` ( x x. ( log ` x ) ) ) ) = ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) |
154 |
149 153
|
eqtr2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) |
155 |
38
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) e. CC ) |
156 |
141 155 147 148
|
divassd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( A x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) |
157 |
146 154 156
|
3brtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) <_ ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) |
158 |
53
|
leabsd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) <_ ( abs ` ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) ) |
159 |
70 53 72 157 158
|
letrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) <_ ( abs ` ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) ) |
160 |
159
|
adantrr |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) <_ ( abs ` ( A x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( n x. ( abs ` ( ( R ` ( x / ( n + 1 ) ) ) - ( R ` ( x / n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) ) |
161 |
5 52 53 69 160
|
o1le |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) |