| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntsval.1 |
|- S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) |
| 2 |
|
pntrlog2bnd.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
| 3 |
|
pntrlog2bnd.t |
|- T = ( a e. RR |-> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) ) |
| 4 |
|
elioore |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
| 5 |
4
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) |
| 6 |
|
1rp |
|- 1 e. RR+ |
| 7 |
6
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) |
| 8 |
|
1red |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
| 9 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
| 10 |
9
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) |
| 11 |
10
|
simpld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) |
| 12 |
8 5 11
|
ltled |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) |
| 13 |
5 7 12
|
rpgecld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) |
| 14 |
13
|
rprege0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x e. RR /\ 0 <_ x ) ) |
| 15 |
|
flge0nn0 |
|- ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) |
| 16 |
14 15
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) e. NN0 ) |
| 17 |
|
nn0p1nn |
|- ( ( |_ ` x ) e. NN0 -> ( ( |_ ` x ) + 1 ) e. NN ) |
| 18 |
16 17
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) + 1 ) e. NN ) |
| 19 |
18
|
nnrpd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) + 1 ) e. RR+ ) |
| 20 |
13 19
|
rpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) e. RR+ ) |
| 21 |
2
|
pntrval |
|- ( ( x / ( ( |_ ` x ) + 1 ) ) e. RR+ -> ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) = ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) - ( x / ( ( |_ ` x ) + 1 ) ) ) ) |
| 22 |
20 21
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) = ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) - ( x / ( ( |_ ` x ) + 1 ) ) ) ) |
| 23 |
5 18
|
nndivred |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) e. RR ) |
| 24 |
|
2re |
|- 2 e. RR |
| 25 |
24
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) |
| 26 |
|
flltp1 |
|- ( x e. RR -> x < ( ( |_ ` x ) + 1 ) ) |
| 27 |
5 26
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x < ( ( |_ ` x ) + 1 ) ) |
| 28 |
18
|
nncnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) + 1 ) e. CC ) |
| 29 |
28
|
mulridd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( |_ ` x ) + 1 ) x. 1 ) = ( ( |_ ` x ) + 1 ) ) |
| 30 |
27 29
|
breqtrrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x < ( ( ( |_ ` x ) + 1 ) x. 1 ) ) |
| 31 |
5 8 19
|
ltdivmuld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x / ( ( |_ ` x ) + 1 ) ) < 1 <-> x < ( ( ( |_ ` x ) + 1 ) x. 1 ) ) ) |
| 32 |
30 31
|
mpbird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) < 1 ) |
| 33 |
|
1lt2 |
|- 1 < 2 |
| 34 |
33
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 < 2 ) |
| 35 |
23 8 25 32 34
|
lttrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) < 2 ) |
| 36 |
|
chpeq0 |
|- ( ( x / ( ( |_ ` x ) + 1 ) ) e. RR -> ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) = 0 <-> ( x / ( ( |_ ` x ) + 1 ) ) < 2 ) ) |
| 37 |
23 36
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) = 0 <-> ( x / ( ( |_ ` x ) + 1 ) ) < 2 ) ) |
| 38 |
35 37
|
mpbird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) = 0 ) |
| 39 |
38
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` ( x / ( ( |_ ` x ) + 1 ) ) ) - ( x / ( ( |_ ` x ) + 1 ) ) ) = ( 0 - ( x / ( ( |_ ` x ) + 1 ) ) ) ) |
| 40 |
22 39
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) = ( 0 - ( x / ( ( |_ ` x ) + 1 ) ) ) ) |
| 41 |
40
|
fveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) = ( abs ` ( 0 - ( x / ( ( |_ ` x ) + 1 ) ) ) ) ) |
| 42 |
|
0red |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 e. RR ) |
| 43 |
20
|
rpge0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( x / ( ( |_ ` x ) + 1 ) ) ) |
| 44 |
42 23 43
|
abssuble0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( 0 - ( x / ( ( |_ ` x ) + 1 ) ) ) ) = ( ( x / ( ( |_ ` x ) + 1 ) ) - 0 ) ) |
| 45 |
23
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) e. CC ) |
| 46 |
45
|
subid1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x / ( ( |_ ` x ) + 1 ) ) - 0 ) = ( x / ( ( |_ ` x ) + 1 ) ) ) |
| 47 |
41 44 46
|
3eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) = ( x / ( ( |_ ` x ) + 1 ) ) ) |
| 48 |
16
|
nn0red |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) e. RR ) |
| 49 |
1
|
pntsval2 |
|- ( ( |_ ` x ) e. RR -> ( S ` ( |_ ` x ) ) = sum_ n e. ( 1 ... ( |_ ` ( |_ ` x ) ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) |
| 50 |
48 49
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( S ` ( |_ ` x ) ) = sum_ n e. ( 1 ... ( |_ ` ( |_ ` x ) ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) |
| 51 |
16
|
nn0cnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) e. CC ) |
| 52 |
|
1cnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. CC ) |
| 53 |
51 52
|
pncand |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( |_ ` x ) + 1 ) - 1 ) = ( |_ ` x ) ) |
| 54 |
53
|
fveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( S ` ( |_ ` x ) ) ) |
| 55 |
1
|
pntsval2 |
|- ( x e. RR -> ( S ` x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) |
| 56 |
5 55
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( S ` x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) |
| 57 |
|
flidm |
|- ( x e. RR -> ( |_ ` ( |_ ` x ) ) = ( |_ ` x ) ) |
| 58 |
5 57
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` ( |_ ` x ) ) = ( |_ ` x ) ) |
| 59 |
58
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` ( |_ ` x ) ) ) = ( 1 ... ( |_ ` x ) ) ) |
| 60 |
59
|
sumeq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` ( |_ ` x ) ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) |
| 61 |
56 60
|
eqtr4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( S ` x ) = sum_ n e. ( 1 ... ( |_ ` ( |_ ` x ) ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) |
| 62 |
50 54 61
|
3eqtr4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( S ` x ) ) |
| 63 |
53
|
fveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( T ` ( |_ ` x ) ) ) |
| 64 |
63
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) = ( 2 x. ( T ` ( |_ ` x ) ) ) ) |
| 65 |
62 64
|
oveq12d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) = ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) |
| 66 |
47 65
|
oveq12d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) x. ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) ) = ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) ) |
| 67 |
5
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) |
| 68 |
67
|
div1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x / 1 ) = x ) |
| 69 |
68
|
fveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` ( x / 1 ) ) = ( R ` x ) ) |
| 70 |
2
|
pntrf |
|- R : RR+ --> RR |
| 71 |
70
|
ffvelcdmi |
|- ( x e. RR+ -> ( R ` x ) e. RR ) |
| 72 |
13 71
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) e. RR ) |
| 73 |
69 72
|
eqeltrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` ( x / 1 ) ) e. RR ) |
| 74 |
73
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` ( x / 1 ) ) e. CC ) |
| 75 |
74
|
abscld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` ( x / 1 ) ) ) e. RR ) |
| 76 |
75
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` ( x / 1 ) ) ) e. CC ) |
| 77 |
76
|
mul01d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` ( x / 1 ) ) ) x. 0 ) = 0 ) |
| 78 |
66 77
|
oveq12d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) x. ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) ) - ( ( abs ` ( R ` ( x / 1 ) ) ) x. 0 ) ) = ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) - 0 ) ) |
| 79 |
1
|
pntsf |
|- S : RR --> RR |
| 80 |
79
|
ffvelcdmi |
|- ( x e. RR -> ( S ` x ) e. RR ) |
| 81 |
5 80
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( S ` x ) e. RR ) |
| 82 |
|
relogcl |
|- ( a e. RR+ -> ( log ` a ) e. RR ) |
| 83 |
|
remulcl |
|- ( ( a e. RR /\ ( log ` a ) e. RR ) -> ( a x. ( log ` a ) ) e. RR ) |
| 84 |
82 83
|
sylan2 |
|- ( ( a e. RR /\ a e. RR+ ) -> ( a x. ( log ` a ) ) e. RR ) |
| 85 |
|
0red |
|- ( ( a e. RR /\ -. a e. RR+ ) -> 0 e. RR ) |
| 86 |
84 85
|
ifclda |
|- ( a e. RR -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) e. RR ) |
| 87 |
3 86
|
fmpti |
|- T : RR --> RR |
| 88 |
87
|
ffvelcdmi |
|- ( ( |_ ` x ) e. RR -> ( T ` ( |_ ` x ) ) e. RR ) |
| 89 |
48 88
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( T ` ( |_ ` x ) ) e. RR ) |
| 90 |
25 89
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( T ` ( |_ ` x ) ) ) e. RR ) |
| 91 |
81 90
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) e. RR ) |
| 92 |
23 91
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) e. RR ) |
| 93 |
92
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) e. CC ) |
| 94 |
93
|
subid1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) - 0 ) = ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) ) |
| 95 |
78 94
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) x. ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) ) - ( ( abs ` ( R ` ( x / 1 ) ) ) x. 0 ) ) = ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) ) |
| 96 |
5
|
flcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) e. ZZ ) |
| 97 |
|
fzval3 |
|- ( ( |_ ` x ) e. ZZ -> ( 1 ... ( |_ ` x ) ) = ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ) |
| 98 |
96 97
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) = ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ) |
| 99 |
98
|
eqcomd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ..^ ( ( |_ ` x ) + 1 ) ) = ( 1 ... ( |_ ` x ) ) ) |
| 100 |
13
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) |
| 101 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
| 102 |
101
|
adantl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 103 |
102
|
nnrpd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
| 104 |
100 103
|
rpdivcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
| 105 |
70
|
ffvelcdmi |
|- ( ( x / n ) e. RR+ -> ( R ` ( x / n ) ) e. RR ) |
| 106 |
104 105
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. RR ) |
| 107 |
106
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. CC ) |
| 108 |
107
|
abscld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) e. RR ) |
| 109 |
108
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) e. CC ) |
| 110 |
6
|
a1i |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR+ ) |
| 111 |
103 110
|
rpaddcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n + 1 ) e. RR+ ) |
| 112 |
100 111
|
rpdivcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / ( n + 1 ) ) e. RR+ ) |
| 113 |
70
|
ffvelcdmi |
|- ( ( x / ( n + 1 ) ) e. RR+ -> ( R ` ( x / ( n + 1 ) ) ) e. RR ) |
| 114 |
112 113
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / ( n + 1 ) ) ) e. RR ) |
| 115 |
114
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / ( n + 1 ) ) ) e. CC ) |
| 116 |
115
|
abscld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) e. RR ) |
| 117 |
116
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) e. CC ) |
| 118 |
109 117
|
negsubdi2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> -u ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) = ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) ) |
| 119 |
118
|
eqcomd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) = -u ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) ) |
| 120 |
102
|
nncnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) |
| 121 |
|
1cnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) |
| 122 |
120 121
|
pncand |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - 1 ) = n ) |
| 123 |
122
|
fveq2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( S ` ( ( n + 1 ) - 1 ) ) = ( S ` n ) ) |
| 124 |
122
|
fveq2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` ( ( n + 1 ) - 1 ) ) = ( T ` n ) ) |
| 125 |
|
rpre |
|- ( n e. RR+ -> n e. RR ) |
| 126 |
|
eleq1 |
|- ( a = n -> ( a e. RR+ <-> n e. RR+ ) ) |
| 127 |
|
id |
|- ( a = n -> a = n ) |
| 128 |
|
fveq2 |
|- ( a = n -> ( log ` a ) = ( log ` n ) ) |
| 129 |
127 128
|
oveq12d |
|- ( a = n -> ( a x. ( log ` a ) ) = ( n x. ( log ` n ) ) ) |
| 130 |
126 129
|
ifbieq1d |
|- ( a = n -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) ) |
| 131 |
|
ovex |
|- ( n x. ( log ` n ) ) e. _V |
| 132 |
|
c0ex |
|- 0 e. _V |
| 133 |
131 132
|
ifex |
|- if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) e. _V |
| 134 |
130 3 133
|
fvmpt |
|- ( n e. RR -> ( T ` n ) = if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) ) |
| 135 |
125 134
|
syl |
|- ( n e. RR+ -> ( T ` n ) = if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) ) |
| 136 |
|
iftrue |
|- ( n e. RR+ -> if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) = ( n x. ( log ` n ) ) ) |
| 137 |
135 136
|
eqtrd |
|- ( n e. RR+ -> ( T ` n ) = ( n x. ( log ` n ) ) ) |
| 138 |
103 137
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` n ) = ( n x. ( log ` n ) ) ) |
| 139 |
124 138
|
eqtrd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` ( ( n + 1 ) - 1 ) ) = ( n x. ( log ` n ) ) ) |
| 140 |
139
|
oveq2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) = ( 2 x. ( n x. ( log ` n ) ) ) ) |
| 141 |
123 140
|
oveq12d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) = ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) |
| 142 |
119 141
|
oveq12d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) x. ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) = ( -u ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) |
| 143 |
108 116
|
resubcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) e. RR ) |
| 144 |
143
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) e. CC ) |
| 145 |
102
|
nnred |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR ) |
| 146 |
79
|
ffvelcdmi |
|- ( n e. RR -> ( S ` n ) e. RR ) |
| 147 |
145 146
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( S ` n ) e. RR ) |
| 148 |
24
|
a1i |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. RR ) |
| 149 |
103
|
relogcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) |
| 150 |
145 149
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( log ` n ) ) e. RR ) |
| 151 |
148 150
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( n x. ( log ` n ) ) ) e. RR ) |
| 152 |
147 151
|
resubcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) e. RR ) |
| 153 |
152
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) e. CC ) |
| 154 |
144 153
|
mulneg1d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( -u ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) = -u ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) |
| 155 |
142 154
|
eqtrd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) x. ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) = -u ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) |
| 156 |
99 155
|
sumeq12rdv |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) x. ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) -u ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) |
| 157 |
|
fzfid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 158 |
143 152
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. RR ) |
| 159 |
158
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. CC ) |
| 160 |
157 159
|
fsumneg |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) -u ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) = -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) |
| 161 |
156 160
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) x. ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) = -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) |
| 162 |
95 161
|
oveq12d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) x. ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) ) - ( ( abs ` ( R ` ( x / 1 ) ) ) x. 0 ) ) - sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) x. ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) ) = ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) - -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) ) |
| 163 |
|
oveq2 |
|- ( m = n -> ( x / m ) = ( x / n ) ) |
| 164 |
163
|
fveq2d |
|- ( m = n -> ( R ` ( x / m ) ) = ( R ` ( x / n ) ) ) |
| 165 |
164
|
fveq2d |
|- ( m = n -> ( abs ` ( R ` ( x / m ) ) ) = ( abs ` ( R ` ( x / n ) ) ) ) |
| 166 |
|
fvoveq1 |
|- ( m = n -> ( S ` ( m - 1 ) ) = ( S ` ( n - 1 ) ) ) |
| 167 |
|
fvoveq1 |
|- ( m = n -> ( T ` ( m - 1 ) ) = ( T ` ( n - 1 ) ) ) |
| 168 |
167
|
oveq2d |
|- ( m = n -> ( 2 x. ( T ` ( m - 1 ) ) ) = ( 2 x. ( T ` ( n - 1 ) ) ) ) |
| 169 |
166 168
|
oveq12d |
|- ( m = n -> ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) |
| 170 |
165 169
|
jca |
|- ( m = n -> ( ( abs ` ( R ` ( x / m ) ) ) = ( abs ` ( R ` ( x / n ) ) ) /\ ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) ) |
| 171 |
|
oveq2 |
|- ( m = ( n + 1 ) -> ( x / m ) = ( x / ( n + 1 ) ) ) |
| 172 |
171
|
fveq2d |
|- ( m = ( n + 1 ) -> ( R ` ( x / m ) ) = ( R ` ( x / ( n + 1 ) ) ) ) |
| 173 |
172
|
fveq2d |
|- ( m = ( n + 1 ) -> ( abs ` ( R ` ( x / m ) ) ) = ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) |
| 174 |
|
fvoveq1 |
|- ( m = ( n + 1 ) -> ( S ` ( m - 1 ) ) = ( S ` ( ( n + 1 ) - 1 ) ) ) |
| 175 |
|
fvoveq1 |
|- ( m = ( n + 1 ) -> ( T ` ( m - 1 ) ) = ( T ` ( ( n + 1 ) - 1 ) ) ) |
| 176 |
175
|
oveq2d |
|- ( m = ( n + 1 ) -> ( 2 x. ( T ` ( m - 1 ) ) ) = ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) |
| 177 |
174 176
|
oveq12d |
|- ( m = ( n + 1 ) -> ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) |
| 178 |
173 177
|
jca |
|- ( m = ( n + 1 ) -> ( ( abs ` ( R ` ( x / m ) ) ) = ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) /\ ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) ) |
| 179 |
|
oveq2 |
|- ( m = 1 -> ( x / m ) = ( x / 1 ) ) |
| 180 |
179
|
fveq2d |
|- ( m = 1 -> ( R ` ( x / m ) ) = ( R ` ( x / 1 ) ) ) |
| 181 |
180
|
fveq2d |
|- ( m = 1 -> ( abs ` ( R ` ( x / m ) ) ) = ( abs ` ( R ` ( x / 1 ) ) ) ) |
| 182 |
|
oveq1 |
|- ( m = 1 -> ( m - 1 ) = ( 1 - 1 ) ) |
| 183 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 184 |
182 183
|
eqtrdi |
|- ( m = 1 -> ( m - 1 ) = 0 ) |
| 185 |
184
|
fveq2d |
|- ( m = 1 -> ( S ` ( m - 1 ) ) = ( S ` 0 ) ) |
| 186 |
|
0re |
|- 0 e. RR |
| 187 |
|
fveq2 |
|- ( a = 0 -> ( |_ ` a ) = ( |_ ` 0 ) ) |
| 188 |
|
0z |
|- 0 e. ZZ |
| 189 |
|
flid |
|- ( 0 e. ZZ -> ( |_ ` 0 ) = 0 ) |
| 190 |
188 189
|
ax-mp |
|- ( |_ ` 0 ) = 0 |
| 191 |
187 190
|
eqtrdi |
|- ( a = 0 -> ( |_ ` a ) = 0 ) |
| 192 |
191
|
oveq2d |
|- ( a = 0 -> ( 1 ... ( |_ ` a ) ) = ( 1 ... 0 ) ) |
| 193 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
| 194 |
192 193
|
eqtrdi |
|- ( a = 0 -> ( 1 ... ( |_ ` a ) ) = (/) ) |
| 195 |
194
|
sumeq1d |
|- ( a = 0 -> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) = sum_ i e. (/) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) |
| 196 |
|
sum0 |
|- sum_ i e. (/) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) = 0 |
| 197 |
195 196
|
eqtrdi |
|- ( a = 0 -> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) = 0 ) |
| 198 |
197 1 132
|
fvmpt |
|- ( 0 e. RR -> ( S ` 0 ) = 0 ) |
| 199 |
186 198
|
ax-mp |
|- ( S ` 0 ) = 0 |
| 200 |
185 199
|
eqtrdi |
|- ( m = 1 -> ( S ` ( m - 1 ) ) = 0 ) |
| 201 |
184
|
fveq2d |
|- ( m = 1 -> ( T ` ( m - 1 ) ) = ( T ` 0 ) ) |
| 202 |
|
rpne0 |
|- ( a e. RR+ -> a =/= 0 ) |
| 203 |
202
|
necon2bi |
|- ( a = 0 -> -. a e. RR+ ) |
| 204 |
203
|
iffalsed |
|- ( a = 0 -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = 0 ) |
| 205 |
204 3 132
|
fvmpt |
|- ( 0 e. RR -> ( T ` 0 ) = 0 ) |
| 206 |
186 205
|
ax-mp |
|- ( T ` 0 ) = 0 |
| 207 |
201 206
|
eqtrdi |
|- ( m = 1 -> ( T ` ( m - 1 ) ) = 0 ) |
| 208 |
207
|
oveq2d |
|- ( m = 1 -> ( 2 x. ( T ` ( m - 1 ) ) ) = ( 2 x. 0 ) ) |
| 209 |
|
2t0e0 |
|- ( 2 x. 0 ) = 0 |
| 210 |
208 209
|
eqtrdi |
|- ( m = 1 -> ( 2 x. ( T ` ( m - 1 ) ) ) = 0 ) |
| 211 |
200 210
|
oveq12d |
|- ( m = 1 -> ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = ( 0 - 0 ) ) |
| 212 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 213 |
211 212
|
eqtrdi |
|- ( m = 1 -> ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = 0 ) |
| 214 |
181 213
|
jca |
|- ( m = 1 -> ( ( abs ` ( R ` ( x / m ) ) ) = ( abs ` ( R ` ( x / 1 ) ) ) /\ ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = 0 ) ) |
| 215 |
|
oveq2 |
|- ( m = ( ( |_ ` x ) + 1 ) -> ( x / m ) = ( x / ( ( |_ ` x ) + 1 ) ) ) |
| 216 |
215
|
fveq2d |
|- ( m = ( ( |_ ` x ) + 1 ) -> ( R ` ( x / m ) ) = ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) |
| 217 |
216
|
fveq2d |
|- ( m = ( ( |_ ` x ) + 1 ) -> ( abs ` ( R ` ( x / m ) ) ) = ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) ) |
| 218 |
|
fvoveq1 |
|- ( m = ( ( |_ ` x ) + 1 ) -> ( S ` ( m - 1 ) ) = ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) |
| 219 |
|
fvoveq1 |
|- ( m = ( ( |_ ` x ) + 1 ) -> ( T ` ( m - 1 ) ) = ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) |
| 220 |
219
|
oveq2d |
|- ( m = ( ( |_ ` x ) + 1 ) -> ( 2 x. ( T ` ( m - 1 ) ) ) = ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) |
| 221 |
218 220
|
oveq12d |
|- ( m = ( ( |_ ` x ) + 1 ) -> ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) ) |
| 222 |
217 221
|
jca |
|- ( m = ( ( |_ ` x ) + 1 ) -> ( ( abs ` ( R ` ( x / m ) ) ) = ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) /\ ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) = ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) ) ) |
| 223 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 224 |
18 223
|
eleqtrdi |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 225 |
13
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> x e. RR+ ) |
| 226 |
|
elfznn |
|- ( m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) -> m e. NN ) |
| 227 |
226
|
adantl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> m e. NN ) |
| 228 |
227
|
nnrpd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> m e. RR+ ) |
| 229 |
225 228
|
rpdivcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( x / m ) e. RR+ ) |
| 230 |
70
|
ffvelcdmi |
|- ( ( x / m ) e. RR+ -> ( R ` ( x / m ) ) e. RR ) |
| 231 |
229 230
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( R ` ( x / m ) ) e. RR ) |
| 232 |
231
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( R ` ( x / m ) ) e. CC ) |
| 233 |
232
|
abscld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( abs ` ( R ` ( x / m ) ) ) e. RR ) |
| 234 |
233
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( abs ` ( R ` ( x / m ) ) ) e. CC ) |
| 235 |
227
|
nnred |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> m e. RR ) |
| 236 |
|
1red |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> 1 e. RR ) |
| 237 |
235 236
|
resubcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( m - 1 ) e. RR ) |
| 238 |
79
|
ffvelcdmi |
|- ( ( m - 1 ) e. RR -> ( S ` ( m - 1 ) ) e. RR ) |
| 239 |
237 238
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( S ` ( m - 1 ) ) e. RR ) |
| 240 |
24
|
a1i |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> 2 e. RR ) |
| 241 |
87
|
ffvelcdmi |
|- ( ( m - 1 ) e. RR -> ( T ` ( m - 1 ) ) e. RR ) |
| 242 |
237 241
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( T ` ( m - 1 ) ) e. RR ) |
| 243 |
240 242
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( 2 x. ( T ` ( m - 1 ) ) ) e. RR ) |
| 244 |
239 243
|
resubcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) e. RR ) |
| 245 |
244
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( ( S ` ( m - 1 ) ) - ( 2 x. ( T ` ( m - 1 ) ) ) ) e. CC ) |
| 246 |
170 178 214 222 224 234 245
|
fsumparts |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) - ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) ) = ( ( ( ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) x. ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) ) - ( ( abs ` ( R ` ( x / 1 ) ) ) x. 0 ) ) - sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) x. ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) ) ) |
| 247 |
147
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( S ` n ) e. CC ) |
| 248 |
87
|
ffvelcdmi |
|- ( n e. RR -> ( T ` n ) e. RR ) |
| 249 |
145 248
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` n ) e. RR ) |
| 250 |
148 249
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( T ` n ) ) e. RR ) |
| 251 |
250
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( T ` n ) ) e. CC ) |
| 252 |
|
1red |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) |
| 253 |
145 252
|
resubcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n - 1 ) e. RR ) |
| 254 |
79
|
ffvelcdmi |
|- ( ( n - 1 ) e. RR -> ( S ` ( n - 1 ) ) e. RR ) |
| 255 |
253 254
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( S ` ( n - 1 ) ) e. RR ) |
| 256 |
255
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( S ` ( n - 1 ) ) e. CC ) |
| 257 |
87
|
ffvelcdmi |
|- ( ( n - 1 ) e. RR -> ( T ` ( n - 1 ) ) e. RR ) |
| 258 |
253 257
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` ( n - 1 ) ) e. RR ) |
| 259 |
148 258
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( T ` ( n - 1 ) ) ) e. RR ) |
| 260 |
259
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( T ` ( n - 1 ) ) ) e. CC ) |
| 261 |
247 251 256 260
|
sub4d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` n ) - ( 2 x. ( T ` n ) ) ) - ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) = ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( ( 2 x. ( T ` n ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) ) |
| 262 |
124
|
oveq2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) = ( 2 x. ( T ` n ) ) ) |
| 263 |
123 262
|
oveq12d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) = ( ( S ` n ) - ( 2 x. ( T ` n ) ) ) ) |
| 264 |
263
|
oveq1d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) - ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) = ( ( ( S ` n ) - ( 2 x. ( T ` n ) ) ) - ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) ) |
| 265 |
|
2cnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. CC ) |
| 266 |
249
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` n ) e. CC ) |
| 267 |
258
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` ( n - 1 ) ) e. CC ) |
| 268 |
265 266 267
|
subdid |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) = ( ( 2 x. ( T ` n ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) |
| 269 |
268
|
oveq2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) = ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( ( 2 x. ( T ` n ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) ) |
| 270 |
261 264 269
|
3eqtr4d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) - ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) = ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) |
| 271 |
270
|
oveq2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) - ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) |
| 272 |
99 271
|
sumeq12rdv |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) - ( ( S ` ( n - 1 ) ) - ( 2 x. ( T ` ( n - 1 ) ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) |
| 273 |
246 272
|
eqtr3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` ( x / ( ( |_ ` x ) + 1 ) ) ) ) x. ( ( S ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) ) - ( ( abs ` ( R ` ( x / 1 ) ) ) x. 0 ) ) - sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) - ( abs ` ( R ` ( x / n ) ) ) ) x. ( ( S ` ( ( n + 1 ) - 1 ) ) - ( 2 x. ( T ` ( ( n + 1 ) - 1 ) ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) |
| 274 |
157 159
|
fsumcl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. CC ) |
| 275 |
93 274
|
subnegd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) - -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) = ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) ) |
| 276 |
162 273 275
|
3eqtr3rd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) |
| 277 |
13
|
relogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) |
| 278 |
277
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) |
| 279 |
67 278
|
mulcomd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) = ( ( log ` x ) x. x ) ) |
| 280 |
276 279
|
oveq12d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( ( log ` x ) x. x ) ) ) |
| 281 |
147 255
|
resubcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` n ) - ( S ` ( n - 1 ) ) ) e. RR ) |
| 282 |
249 258
|
resubcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) e. RR ) |
| 283 |
148 282
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. RR ) |
| 284 |
281 283
|
resubcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) e. RR ) |
| 285 |
108 284
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) e. RR ) |
| 286 |
157 285
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) e. RR ) |
| 287 |
286
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) e. CC ) |
| 288 |
5 11
|
rplogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) |
| 289 |
288
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) |
| 290 |
13
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) |
| 291 |
287 278 67 289 290
|
divdiv1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) / x ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( ( log ` x ) x. x ) ) ) |
| 292 |
280 291
|
eqtr4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) / x ) ) |
| 293 |
292
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) + ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) = ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) + ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) / x ) ) ) |
| 294 |
72
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) e. CC ) |
| 295 |
294
|
abscld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` x ) ) e. RR ) |
| 296 |
295 277
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. RR ) |
| 297 |
108 281
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) e. RR ) |
| 298 |
157 297
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) e. RR ) |
| 299 |
298 288
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) e. RR ) |
| 300 |
296 299
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) e. RR ) |
| 301 |
300
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) e. CC ) |
| 302 |
287 278 289
|
divcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) e. CC ) |
| 303 |
301 302 67 290
|
divdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) ) / x ) = ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) + ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) / x ) ) ) |
| 304 |
296
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. CC ) |
| 305 |
299
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) e. CC ) |
| 306 |
304 305 302
|
subsubd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) ) ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) ) ) |
| 307 |
|
2cnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) |
| 308 |
266 267
|
subcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) e. CC ) |
| 309 |
109 308
|
mulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. CC ) |
| 310 |
157 307 309
|
fsummulc2 |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( 2 x. ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) |
| 311 |
281
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( S ` n ) - ( S ` ( n - 1 ) ) ) e. CC ) |
| 312 |
265 308
|
mulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. CC ) |
| 313 |
311 312
|
nncand |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) = ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) |
| 314 |
313
|
oveq2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) x. ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) |
| 315 |
284
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) e. CC ) |
| 316 |
109 311 315
|
subdid |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) = ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) - ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) ) |
| 317 |
109 265 308
|
mul12d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) = ( 2 x. ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) |
| 318 |
314 316 317
|
3eqtr3d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) - ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) = ( 2 x. ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) |
| 319 |
318
|
sumeq2dv |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) - ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( 2 x. ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) |
| 320 |
297
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) e. CC ) |
| 321 |
285
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) e. CC ) |
| 322 |
157 320 321
|
fsumsub |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) - ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) ) |
| 323 |
310 319 322
|
3eqtr2rd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) = ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) |
| 324 |
323
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) / ( log ` x ) ) = ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) / ( log ` x ) ) ) |
| 325 |
298
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) e. CC ) |
| 326 |
325 287 278 289
|
divsubdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) / ( log ` x ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) ) ) |
| 327 |
108 282
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. RR ) |
| 328 |
157 327
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. RR ) |
| 329 |
328
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. CC ) |
| 330 |
307 329 278 289
|
div23d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) / ( log ` x ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) |
| 331 |
324 326 330
|
3eqtr3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) |
| 332 |
331
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) ) ) = ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) |
| 333 |
306 332
|
eqtr3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) ) = ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) |
| 334 |
333
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( S ` n ) - ( S ` ( n - 1 ) ) ) - ( 2 x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / ( log ` x ) ) ) / x ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) |
| 335 |
293 303 334
|
3eqtr2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) + ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) |
| 336 |
335
|
mpteq2dva |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) + ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) ) |
| 337 |
300 13
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) e. RR ) |
| 338 |
157 158
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) e. RR ) |
| 339 |
92 338
|
readdcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) e. RR ) |
| 340 |
13 288
|
rpmulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR+ ) |
| 341 |
339 340
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) |
| 342 |
1 2
|
pntrlog2bndlem1 |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) ) e. <_O(1) |
| 343 |
342
|
a1i |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) ) e. <_O(1) ) |
| 344 |
340
|
rpcnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. CC ) |
| 345 |
340
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) =/= 0 ) |
| 346 |
93 274 344 345
|
divdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) / ( x x. ( log ` x ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) |
| 347 |
91
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) e. CC ) |
| 348 |
45 347 344 345
|
divassd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) |
| 349 |
348
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) / ( x x. ( log ` x ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) = ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) |
| 350 |
346 349
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) |
| 351 |
350
|
mpteq2dva |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) ) |
| 352 |
91 340
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) |
| 353 |
23 352
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. RR ) |
| 354 |
338 340
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) |
| 355 |
|
ioossre |
|- ( 1 (,) +oo ) C_ RR |
| 356 |
355
|
a1i |
|- ( T. -> ( 1 (,) +oo ) C_ RR ) |
| 357 |
|
1red |
|- ( T. -> 1 e. RR ) |
| 358 |
23 8 32
|
ltled |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) <_ 1 ) |
| 359 |
358
|
adantrr |
|- ( ( T. /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( x / ( ( |_ ` x ) + 1 ) ) <_ 1 ) |
| 360 |
356 23 357 357 359
|
ello1d |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( x / ( ( |_ ` x ) + 1 ) ) ) e. <_O(1) ) |
| 361 |
81
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( S ` x ) e. CC ) |
| 362 |
90
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( T ` ( |_ ` x ) ) ) e. CC ) |
| 363 |
361 362 344 345
|
divsubdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) = ( ( ( S ` x ) / ( x x. ( log ` x ) ) ) - ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) ) ) |
| 364 |
363
|
mpteq2dva |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( S ` x ) / ( x x. ( log ` x ) ) ) - ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) ) ) ) |
| 365 |
81 340
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( S ` x ) / ( x x. ( log ` x ) ) ) e. RR ) |
| 366 |
90 340
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) |
| 367 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
| 368 |
|
o1const |
|- ( ( ( 1 (,) +oo ) C_ RR /\ 2 e. CC ) -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) |
| 369 |
355 367 368
|
sylancr |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) |
| 370 |
365
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( S ` x ) / ( x x. ( log ` x ) ) ) e. CC ) |
| 371 |
81 13
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( S ` x ) / x ) e. RR ) |
| 372 |
371
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( S ` x ) / x ) e. CC ) |
| 373 |
307 278
|
mulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( log ` x ) ) e. CC ) |
| 374 |
372 373 278 289
|
divsubdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) / ( log ` x ) ) = ( ( ( ( S ` x ) / x ) / ( log ` x ) ) - ( ( 2 x. ( log ` x ) ) / ( log ` x ) ) ) ) |
| 375 |
25 277
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( log ` x ) ) e. RR ) |
| 376 |
371 375
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) e. RR ) |
| 377 |
376
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) e. CC ) |
| 378 |
377 278 289
|
divrecd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) / ( log ` x ) ) = ( ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) x. ( 1 / ( log ` x ) ) ) ) |
| 379 |
361 67 278 290 289
|
divdiv1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( S ` x ) / x ) / ( log ` x ) ) = ( ( S ` x ) / ( x x. ( log ` x ) ) ) ) |
| 380 |
307 278 289
|
divcan4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. ( log ` x ) ) / ( log ` x ) ) = 2 ) |
| 381 |
379 380
|
oveq12d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( S ` x ) / x ) / ( log ` x ) ) - ( ( 2 x. ( log ` x ) ) / ( log ` x ) ) ) = ( ( ( S ` x ) / ( x x. ( log ` x ) ) ) - 2 ) ) |
| 382 |
374 378 381
|
3eqtr3rd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( S ` x ) / ( x x. ( log ` x ) ) ) - 2 ) = ( ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) x. ( 1 / ( log ` x ) ) ) ) |
| 383 |
382
|
mpteq2dva |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( S ` x ) / ( x x. ( log ` x ) ) ) - 2 ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) x. ( 1 / ( log ` x ) ) ) ) ) |
| 384 |
8 288
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 / ( log ` x ) ) e. RR ) |
| 385 |
13
|
ex |
|- ( T. -> ( x e. ( 1 (,) +oo ) -> x e. RR+ ) ) |
| 386 |
385
|
ssrdv |
|- ( T. -> ( 1 (,) +oo ) C_ RR+ ) |
| 387 |
1
|
selbergs |
|- ( x e. RR+ |-> ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) |
| 388 |
387
|
a1i |
|- ( T. -> ( x e. RR+ |-> ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |
| 389 |
386 388
|
o1res2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) |
| 390 |
|
divlogrlim |
|- ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 |
| 391 |
|
rlimo1 |
|- ( ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) |
| 392 |
390 391
|
mp1i |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) |
| 393 |
376 384 389 392
|
o1mul2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( S ` x ) / x ) - ( 2 x. ( log ` x ) ) ) x. ( 1 / ( log ` x ) ) ) ) e. O(1) ) |
| 394 |
383 393
|
eqeltrd |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( S ` x ) / ( x x. ( log ` x ) ) ) - 2 ) ) e. O(1) ) |
| 395 |
370 307 394
|
o1dif |
|- ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( ( S ` x ) / ( x x. ( log ` x ) ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) ) |
| 396 |
369 395
|
mpbird |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( S ` x ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) |
| 397 |
24
|
a1i |
|- ( T. -> 2 e. RR ) |
| 398 |
5 277
|
remulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR ) |
| 399 |
|
2rp |
|- 2 e. RR+ |
| 400 |
399
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR+ ) |
| 401 |
400
|
rpge0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ 2 ) |
| 402 |
|
flge1nn |
|- ( ( x e. RR /\ 1 <_ x ) -> ( |_ ` x ) e. NN ) |
| 403 |
5 12 402
|
syl2anc |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) e. NN ) |
| 404 |
403
|
nnrpd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) e. RR+ ) |
| 405 |
|
rpre |
|- ( ( |_ ` x ) e. RR+ -> ( |_ ` x ) e. RR ) |
| 406 |
|
eleq1 |
|- ( a = ( |_ ` x ) -> ( a e. RR+ <-> ( |_ ` x ) e. RR+ ) ) |
| 407 |
|
id |
|- ( a = ( |_ ` x ) -> a = ( |_ ` x ) ) |
| 408 |
|
fveq2 |
|- ( a = ( |_ ` x ) -> ( log ` a ) = ( log ` ( |_ ` x ) ) ) |
| 409 |
407 408
|
oveq12d |
|- ( a = ( |_ ` x ) -> ( a x. ( log ` a ) ) = ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) ) |
| 410 |
406 409
|
ifbieq1d |
|- ( a = ( |_ ` x ) -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = if ( ( |_ ` x ) e. RR+ , ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) , 0 ) ) |
| 411 |
|
ovex |
|- ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) e. _V |
| 412 |
411 132
|
ifex |
|- if ( ( |_ ` x ) e. RR+ , ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) , 0 ) e. _V |
| 413 |
410 3 412
|
fvmpt |
|- ( ( |_ ` x ) e. RR -> ( T ` ( |_ ` x ) ) = if ( ( |_ ` x ) e. RR+ , ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) , 0 ) ) |
| 414 |
405 413
|
syl |
|- ( ( |_ ` x ) e. RR+ -> ( T ` ( |_ ` x ) ) = if ( ( |_ ` x ) e. RR+ , ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) , 0 ) ) |
| 415 |
|
iftrue |
|- ( ( |_ ` x ) e. RR+ -> if ( ( |_ ` x ) e. RR+ , ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) , 0 ) = ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) ) |
| 416 |
414 415
|
eqtrd |
|- ( ( |_ ` x ) e. RR+ -> ( T ` ( |_ ` x ) ) = ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) ) |
| 417 |
404 416
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( T ` ( |_ ` x ) ) = ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) ) |
| 418 |
404
|
relogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` ( |_ ` x ) ) e. RR ) |
| 419 |
16
|
nn0ge0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( |_ ` x ) ) |
| 420 |
403
|
nnge1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 <_ ( |_ ` x ) ) |
| 421 |
48 420
|
logge0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( log ` ( |_ ` x ) ) ) |
| 422 |
|
flle |
|- ( x e. RR -> ( |_ ` x ) <_ x ) |
| 423 |
5 422
|
syl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) <_ x ) |
| 424 |
404 13
|
logled |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) <_ x <-> ( log ` ( |_ ` x ) ) <_ ( log ` x ) ) ) |
| 425 |
423 424
|
mpbid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` ( |_ ` x ) ) <_ ( log ` x ) ) |
| 426 |
48 5 418 277 419 421 423 425
|
lemul12ad |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) <_ ( x x. ( log ` x ) ) ) |
| 427 |
417 426
|
eqbrtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( T ` ( |_ ` x ) ) <_ ( x x. ( log ` x ) ) ) |
| 428 |
89 398 25 401 427
|
lemul2ad |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( T ` ( |_ ` x ) ) ) <_ ( 2 x. ( x x. ( log ` x ) ) ) ) |
| 429 |
90 25 340
|
ledivmul2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) <_ 2 <-> ( 2 x. ( T ` ( |_ ` x ) ) ) <_ ( 2 x. ( x x. ( log ` x ) ) ) ) ) |
| 430 |
428 429
|
mpbird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) <_ 2 ) |
| 431 |
430
|
adantrr |
|- ( ( T. /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) <_ 2 ) |
| 432 |
356 366 357 397 431
|
ello1d |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) ) e. <_O(1) ) |
| 433 |
|
0red |
|- ( T. -> 0 e. RR ) |
| 434 |
48 418 419 421
|
mulge0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( ( |_ ` x ) x. ( log ` ( |_ ` x ) ) ) ) |
| 435 |
434 417
|
breqtrrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( T ` ( |_ ` x ) ) ) |
| 436 |
25 89 401 435
|
mulge0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( 2 x. ( T ` ( |_ ` x ) ) ) ) |
| 437 |
90 340 436
|
divge0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) ) |
| 438 |
366 433 437
|
o1lo12 |
|- ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) ) e. <_O(1) ) ) |
| 439 |
432 438
|
mpbird |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) |
| 440 |
365 366 396 439
|
o1sub2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( S ` x ) / ( x x. ( log ` x ) ) ) - ( ( 2 x. ( T ` ( |_ ` x ) ) ) / ( x x. ( log ` x ) ) ) ) ) e. O(1) ) |
| 441 |
364 440
|
eqeltrd |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) |
| 442 |
352 441
|
o1lo1d |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. <_O(1) ) |
| 443 |
23 352 360 442 43
|
lo1mul |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) e. <_O(1) ) |
| 444 |
1
|
selbergsb |
|- E. c e. RR+ A. y e. ( 1 [,) +oo ) ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c |
| 445 |
|
simpl |
|- ( ( c e. RR+ /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) -> c e. RR+ ) |
| 446 |
|
simpr |
|- ( ( c e. RR+ /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) |
| 447 |
1 2 445 446
|
pntrlog2bndlem3 |
|- ( ( c e. RR+ /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) |
| 448 |
447
|
rexlimiva |
|- ( E. c e. RR+ A. y e. ( 1 [,) +oo ) ( abs ` ( ( ( S ` y ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) |
| 449 |
444 448
|
mp1i |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. O(1) ) |
| 450 |
354 449
|
o1lo1d |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. <_O(1) ) |
| 451 |
353 354 443 450
|
lo1add |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) + ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) e. <_O(1) ) |
| 452 |
351 451
|
eqeltrd |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) e. <_O(1) ) |
| 453 |
337 341 343 452
|
lo1add |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( S ` n ) - ( S ` ( n - 1 ) ) ) ) / ( log ` x ) ) ) / x ) + ( ( ( ( x / ( ( |_ ` x ) + 1 ) ) x. ( ( S ` x ) - ( 2 x. ( T ` ( |_ ` x ) ) ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) - ( abs ` ( R ` ( x / ( n + 1 ) ) ) ) ) x. ( ( S ` n ) - ( 2 x. ( n x. ( log ` n ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) e. <_O(1) ) |
| 454 |
336 453
|
eqeltrrd |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) e. <_O(1) ) |
| 455 |
454
|
mptru |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) e. <_O(1) |