| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntsval.1 |
|- S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) |
| 2 |
|
pntrlog2bnd.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
| 3 |
|
pntrlog2bnd.t |
|- T = ( a e. RR |-> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) ) |
| 4 |
|
pntrlog2bndlem5.1 |
|- ( ph -> B e. RR+ ) |
| 5 |
|
pntrlog2bndlem5.2 |
|- ( ph -> A. y e. RR+ ( abs ` ( ( R ` y ) / y ) ) <_ B ) |
| 6 |
|
elioore |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
| 7 |
6
|
adantl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) |
| 8 |
|
1rp |
|- 1 e. RR+ |
| 9 |
8
|
a1i |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) |
| 10 |
|
1red |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
| 11 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) |
| 13 |
12
|
simpld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) |
| 14 |
10 7 13
|
ltled |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) |
| 15 |
7 9 14
|
rpgecld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) |
| 16 |
2
|
pntrf |
|- R : RR+ --> RR |
| 17 |
16
|
ffvelcdmi |
|- ( x e. RR+ -> ( R ` x ) e. RR ) |
| 18 |
15 17
|
syl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) e. RR ) |
| 19 |
18
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) e. CC ) |
| 20 |
19
|
abscld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` x ) ) e. RR ) |
| 21 |
20
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` x ) ) e. CC ) |
| 22 |
15
|
relogcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) |
| 23 |
22
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) |
| 24 |
21 23
|
mulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. CC ) |
| 25 |
|
2cnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) |
| 26 |
7 13
|
rplogcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) |
| 27 |
26
|
rpne0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) |
| 28 |
25 23 27
|
divcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. CC ) |
| 29 |
|
fzfid |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 30 |
15
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) |
| 31 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
| 32 |
31
|
adantl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 33 |
32
|
nnrpd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
| 34 |
30 33
|
rpdivcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
| 35 |
16
|
ffvelcdmi |
|- ( ( x / n ) e. RR+ -> ( R ` ( x / n ) ) e. RR ) |
| 36 |
34 35
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. RR ) |
| 37 |
36
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. CC ) |
| 38 |
37
|
abscld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) e. RR ) |
| 39 |
33
|
relogcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) |
| 40 |
|
1red |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) |
| 41 |
39 40
|
readdcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` n ) + 1 ) e. RR ) |
| 42 |
38 41
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) e. RR ) |
| 43 |
42
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) e. CC ) |
| 44 |
29 43
|
fsumcl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) e. CC ) |
| 45 |
28 44
|
mulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) e. CC ) |
| 46 |
24 45
|
subcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) e. CC ) |
| 47 |
38
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) e. CC ) |
| 48 |
29 47
|
fsumcl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) e. CC ) |
| 49 |
28 48
|
mulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) e. CC ) |
| 50 |
7
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) |
| 51 |
15
|
rpne0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) |
| 52 |
46 49 50 51
|
divdird |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) / x ) = ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) ) ) |
| 53 |
20 22
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. RR ) |
| 54 |
53
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. CC ) |
| 55 |
54 45 49
|
subsubd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) ) |
| 56 |
28 44 48
|
subdid |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) ) |
| 57 |
29 43 47
|
fsumsub |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( abs ` ( R ` ( x / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) |
| 58 |
41
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` n ) + 1 ) e. CC ) |
| 59 |
|
1cnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) |
| 60 |
47 58 59
|
subdid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( log ` n ) + 1 ) - 1 ) ) = ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( ( abs ` ( R ` ( x / n ) ) ) x. 1 ) ) ) |
| 61 |
39
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. CC ) |
| 62 |
61 59
|
pncand |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` n ) + 1 ) - 1 ) = ( log ` n ) ) |
| 63 |
62
|
oveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( log ` n ) + 1 ) - 1 ) ) = ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) |
| 64 |
47
|
mulridd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. 1 ) = ( abs ` ( R ` ( x / n ) ) ) ) |
| 65 |
64
|
oveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( ( abs ` ( R ` ( x / n ) ) ) x. 1 ) ) = ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( abs ` ( R ` ( x / n ) ) ) ) ) |
| 66 |
60 63 65
|
3eqtr3rd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( abs ` ( R ` ( x / n ) ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) |
| 67 |
66
|
sumeq2dv |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( abs ` ( R ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) |
| 68 |
57 67
|
eqtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) |
| 69 |
68
|
oveq2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) |
| 70 |
56 69
|
eqtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) |
| 71 |
70
|
oveq2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) ) = ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) |
| 72 |
55 71
|
eqtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) = ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) |
| 73 |
72
|
oveq1d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) / x ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) |
| 74 |
52 73
|
eqtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) |
| 75 |
74
|
mpteq2dva |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) ) |
| 76 |
|
2re |
|- 2 e. RR |
| 77 |
76
|
a1i |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) |
| 78 |
77 26
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. RR ) |
| 79 |
29 42
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) e. RR ) |
| 80 |
78 79
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) e. RR ) |
| 81 |
53 80
|
resubcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) e. RR ) |
| 82 |
81 15
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) e. RR ) |
| 83 |
29 38
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) e. RR ) |
| 84 |
78 83
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) e. RR ) |
| 85 |
84 15
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) e. RR ) |
| 86 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 87 |
1 2 3
|
pntrlog2bndlem4 |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) e. <_O(1) |
| 88 |
87
|
a1i |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) e. <_O(1) ) |
| 89 |
32
|
nnred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR ) |
| 90 |
|
simpl |
|- ( ( a e. RR /\ a e. RR+ ) -> a e. RR ) |
| 91 |
|
simpr |
|- ( ( a e. RR /\ a e. RR+ ) -> a e. RR+ ) |
| 92 |
91
|
relogcld |
|- ( ( a e. RR /\ a e. RR+ ) -> ( log ` a ) e. RR ) |
| 93 |
90 92
|
remulcld |
|- ( ( a e. RR /\ a e. RR+ ) -> ( a x. ( log ` a ) ) e. RR ) |
| 94 |
|
0red |
|- ( ( a e. RR /\ -. a e. RR+ ) -> 0 e. RR ) |
| 95 |
93 94
|
ifclda |
|- ( a e. RR -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) e. RR ) |
| 96 |
3 95
|
fmpti |
|- T : RR --> RR |
| 97 |
96
|
ffvelcdmi |
|- ( n e. RR -> ( T ` n ) e. RR ) |
| 98 |
89 97
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` n ) e. RR ) |
| 99 |
89 40
|
resubcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n - 1 ) e. RR ) |
| 100 |
96
|
ffvelcdmi |
|- ( ( n - 1 ) e. RR -> ( T ` ( n - 1 ) ) e. RR ) |
| 101 |
99 100
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` ( n - 1 ) ) e. RR ) |
| 102 |
98 101
|
resubcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) e. RR ) |
| 103 |
38 102
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. RR ) |
| 104 |
29 103
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. RR ) |
| 105 |
78 104
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) e. RR ) |
| 106 |
53 105
|
resubcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) e. RR ) |
| 107 |
106 15
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) e. RR ) |
| 108 |
|
2rp |
|- 2 e. RR+ |
| 109 |
108
|
a1i |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR+ ) |
| 110 |
109
|
rpge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ 2 ) |
| 111 |
77 26 110
|
divge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( 2 / ( log ` x ) ) ) |
| 112 |
37
|
absge0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( R ` ( x / n ) ) ) ) |
| 113 |
33
|
adantr |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> n e. RR+ ) |
| 114 |
113
|
rpcnd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> n e. CC ) |
| 115 |
61
|
adantr |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( log ` n ) e. CC ) |
| 116 |
114 115
|
mulcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n x. ( log ` n ) ) e. CC ) |
| 117 |
|
simpr |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> 1 < n ) |
| 118 |
|
1re |
|- 1 e. RR |
| 119 |
113
|
rpred |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> n e. RR ) |
| 120 |
|
difrp |
|- ( ( 1 e. RR /\ n e. RR ) -> ( 1 < n <-> ( n - 1 ) e. RR+ ) ) |
| 121 |
118 119 120
|
sylancr |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( 1 < n <-> ( n - 1 ) e. RR+ ) ) |
| 122 |
117 121
|
mpbid |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n - 1 ) e. RR+ ) |
| 123 |
122
|
relogcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( log ` ( n - 1 ) ) e. RR ) |
| 124 |
123
|
recnd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( log ` ( n - 1 ) ) e. CC ) |
| 125 |
114 124
|
mulcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n x. ( log ` ( n - 1 ) ) ) e. CC ) |
| 126 |
116 125 124
|
subsubd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( log ` n ) ) - ( ( n x. ( log ` ( n - 1 ) ) ) - ( log ` ( n - 1 ) ) ) ) = ( ( ( n x. ( log ` n ) ) - ( n x. ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) ) |
| 127 |
|
rpre |
|- ( n e. RR+ -> n e. RR ) |
| 128 |
|
eleq1 |
|- ( a = n -> ( a e. RR+ <-> n e. RR+ ) ) |
| 129 |
|
id |
|- ( a = n -> a = n ) |
| 130 |
|
fveq2 |
|- ( a = n -> ( log ` a ) = ( log ` n ) ) |
| 131 |
129 130
|
oveq12d |
|- ( a = n -> ( a x. ( log ` a ) ) = ( n x. ( log ` n ) ) ) |
| 132 |
128 131
|
ifbieq1d |
|- ( a = n -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) ) |
| 133 |
|
ovex |
|- ( n x. ( log ` n ) ) e. _V |
| 134 |
|
c0ex |
|- 0 e. _V |
| 135 |
133 134
|
ifex |
|- if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) e. _V |
| 136 |
132 3 135
|
fvmpt |
|- ( n e. RR -> ( T ` n ) = if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) ) |
| 137 |
127 136
|
syl |
|- ( n e. RR+ -> ( T ` n ) = if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) ) |
| 138 |
|
iftrue |
|- ( n e. RR+ -> if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) = ( n x. ( log ` n ) ) ) |
| 139 |
137 138
|
eqtrd |
|- ( n e. RR+ -> ( T ` n ) = ( n x. ( log ` n ) ) ) |
| 140 |
113 139
|
syl |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( T ` n ) = ( n x. ( log ` n ) ) ) |
| 141 |
|
rpre |
|- ( ( n - 1 ) e. RR+ -> ( n - 1 ) e. RR ) |
| 142 |
|
eleq1 |
|- ( a = ( n - 1 ) -> ( a e. RR+ <-> ( n - 1 ) e. RR+ ) ) |
| 143 |
|
id |
|- ( a = ( n - 1 ) -> a = ( n - 1 ) ) |
| 144 |
|
fveq2 |
|- ( a = ( n - 1 ) -> ( log ` a ) = ( log ` ( n - 1 ) ) ) |
| 145 |
143 144
|
oveq12d |
|- ( a = ( n - 1 ) -> ( a x. ( log ` a ) ) = ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) ) |
| 146 |
142 145
|
ifbieq1d |
|- ( a = ( n - 1 ) -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = if ( ( n - 1 ) e. RR+ , ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) , 0 ) ) |
| 147 |
|
ovex |
|- ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) e. _V |
| 148 |
147 134
|
ifex |
|- if ( ( n - 1 ) e. RR+ , ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) , 0 ) e. _V |
| 149 |
146 3 148
|
fvmpt |
|- ( ( n - 1 ) e. RR -> ( T ` ( n - 1 ) ) = if ( ( n - 1 ) e. RR+ , ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) , 0 ) ) |
| 150 |
141 149
|
syl |
|- ( ( n - 1 ) e. RR+ -> ( T ` ( n - 1 ) ) = if ( ( n - 1 ) e. RR+ , ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) , 0 ) ) |
| 151 |
|
iftrue |
|- ( ( n - 1 ) e. RR+ -> if ( ( n - 1 ) e. RR+ , ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) , 0 ) = ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) ) |
| 152 |
150 151
|
eqtrd |
|- ( ( n - 1 ) e. RR+ -> ( T ` ( n - 1 ) ) = ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) ) |
| 153 |
122 152
|
syl |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( T ` ( n - 1 ) ) = ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) ) |
| 154 |
|
1cnd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> 1 e. CC ) |
| 155 |
114 154 124
|
subdird |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) = ( ( n x. ( log ` ( n - 1 ) ) ) - ( 1 x. ( log ` ( n - 1 ) ) ) ) ) |
| 156 |
124
|
mullidd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( 1 x. ( log ` ( n - 1 ) ) ) = ( log ` ( n - 1 ) ) ) |
| 157 |
156
|
oveq2d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( log ` ( n - 1 ) ) ) - ( 1 x. ( log ` ( n - 1 ) ) ) ) = ( ( n x. ( log ` ( n - 1 ) ) ) - ( log ` ( n - 1 ) ) ) ) |
| 158 |
153 155 157
|
3eqtrd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( T ` ( n - 1 ) ) = ( ( n x. ( log ` ( n - 1 ) ) ) - ( log ` ( n - 1 ) ) ) ) |
| 159 |
140 158
|
oveq12d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = ( ( n x. ( log ` n ) ) - ( ( n x. ( log ` ( n - 1 ) ) ) - ( log ` ( n - 1 ) ) ) ) ) |
| 160 |
114 115 124
|
subdid |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) = ( ( n x. ( log ` n ) ) - ( n x. ( log ` ( n - 1 ) ) ) ) ) |
| 161 |
160
|
oveq1d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) = ( ( ( n x. ( log ` n ) ) - ( n x. ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) ) |
| 162 |
126 159 161
|
3eqtr4d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) ) |
| 163 |
113
|
relogcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( log ` n ) e. RR ) |
| 164 |
163 123
|
resubcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( log ` n ) - ( log ` ( n - 1 ) ) ) e. RR ) |
| 165 |
164
|
recnd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( log ` n ) - ( log ` ( n - 1 ) ) ) e. CC ) |
| 166 |
114 154 165
|
subdird |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n - 1 ) x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) = ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) - ( 1 x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) ) ) |
| 167 |
165
|
mullidd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( 1 x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) = ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) |
| 168 |
167
|
oveq2d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) - ( 1 x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) ) = ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) - ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) ) |
| 169 |
119 164
|
remulcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) e. RR ) |
| 170 |
169
|
recnd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) e. CC ) |
| 171 |
170 115 124
|
subsub3d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) - ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) = ( ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) - ( log ` n ) ) ) |
| 172 |
166 168 171
|
3eqtrd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n - 1 ) x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) = ( ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) - ( log ` n ) ) ) |
| 173 |
114 154
|
npcand |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n - 1 ) + 1 ) = n ) |
| 174 |
173
|
fveq2d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( log ` ( ( n - 1 ) + 1 ) ) = ( log ` n ) ) |
| 175 |
174
|
oveq1d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( log ` ( ( n - 1 ) + 1 ) ) - ( log ` ( n - 1 ) ) ) = ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) |
| 176 |
|
logdifbnd |
|- ( ( n - 1 ) e. RR+ -> ( ( log ` ( ( n - 1 ) + 1 ) ) - ( log ` ( n - 1 ) ) ) <_ ( 1 / ( n - 1 ) ) ) |
| 177 |
122 176
|
syl |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( log ` ( ( n - 1 ) + 1 ) ) - ( log ` ( n - 1 ) ) ) <_ ( 1 / ( n - 1 ) ) ) |
| 178 |
175 177
|
eqbrtrrd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( log ` n ) - ( log ` ( n - 1 ) ) ) <_ ( 1 / ( n - 1 ) ) ) |
| 179 |
|
1red |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> 1 e. RR ) |
| 180 |
164 179 122
|
lemuldiv2d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( ( n - 1 ) x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) <_ 1 <-> ( ( log ` n ) - ( log ` ( n - 1 ) ) ) <_ ( 1 / ( n - 1 ) ) ) ) |
| 181 |
178 180
|
mpbird |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n - 1 ) x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) <_ 1 ) |
| 182 |
172 181
|
eqbrtrrd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) - ( log ` n ) ) <_ 1 ) |
| 183 |
169 123
|
readdcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) e. RR ) |
| 184 |
183 163 179
|
lesubadd2d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) - ( log ` n ) ) <_ 1 <-> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) <_ ( ( log ` n ) + 1 ) ) ) |
| 185 |
182 184
|
mpbid |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) <_ ( ( log ` n ) + 1 ) ) |
| 186 |
162 185
|
eqbrtrd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) <_ ( ( log ` n ) + 1 ) ) |
| 187 |
|
fveq2 |
|- ( n = 1 -> ( T ` n ) = ( T ` 1 ) ) |
| 188 |
|
id |
|- ( a = 1 -> a = 1 ) |
| 189 |
188 8
|
eqeltrdi |
|- ( a = 1 -> a e. RR+ ) |
| 190 |
189
|
iftrued |
|- ( a = 1 -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = ( a x. ( log ` a ) ) ) |
| 191 |
|
fveq2 |
|- ( a = 1 -> ( log ` a ) = ( log ` 1 ) ) |
| 192 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 193 |
191 192
|
eqtrdi |
|- ( a = 1 -> ( log ` a ) = 0 ) |
| 194 |
188 193
|
oveq12d |
|- ( a = 1 -> ( a x. ( log ` a ) ) = ( 1 x. 0 ) ) |
| 195 |
|
ax-1cn |
|- 1 e. CC |
| 196 |
195
|
mul01i |
|- ( 1 x. 0 ) = 0 |
| 197 |
194 196
|
eqtrdi |
|- ( a = 1 -> ( a x. ( log ` a ) ) = 0 ) |
| 198 |
190 197
|
eqtrd |
|- ( a = 1 -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = 0 ) |
| 199 |
198 3 134
|
fvmpt |
|- ( 1 e. RR -> ( T ` 1 ) = 0 ) |
| 200 |
118 199
|
ax-mp |
|- ( T ` 1 ) = 0 |
| 201 |
187 200
|
eqtrdi |
|- ( n = 1 -> ( T ` n ) = 0 ) |
| 202 |
|
oveq1 |
|- ( n = 1 -> ( n - 1 ) = ( 1 - 1 ) ) |
| 203 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 204 |
202 203
|
eqtrdi |
|- ( n = 1 -> ( n - 1 ) = 0 ) |
| 205 |
204
|
fveq2d |
|- ( n = 1 -> ( T ` ( n - 1 ) ) = ( T ` 0 ) ) |
| 206 |
|
0re |
|- 0 e. RR |
| 207 |
|
rpne0 |
|- ( a e. RR+ -> a =/= 0 ) |
| 208 |
207
|
necon2bi |
|- ( a = 0 -> -. a e. RR+ ) |
| 209 |
208
|
iffalsed |
|- ( a = 0 -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = 0 ) |
| 210 |
209 3 134
|
fvmpt |
|- ( 0 e. RR -> ( T ` 0 ) = 0 ) |
| 211 |
206 210
|
ax-mp |
|- ( T ` 0 ) = 0 |
| 212 |
205 211
|
eqtrdi |
|- ( n = 1 -> ( T ` ( n - 1 ) ) = 0 ) |
| 213 |
201 212
|
oveq12d |
|- ( n = 1 -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = ( 0 - 0 ) ) |
| 214 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 215 |
213 214
|
eqtrdi |
|- ( n = 1 -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = 0 ) |
| 216 |
215
|
eqcoms |
|- ( 1 = n -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = 0 ) |
| 217 |
216
|
adantl |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 = n ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = 0 ) |
| 218 |
|
0red |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 e. RR ) |
| 219 |
32
|
nnge1d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ n ) |
| 220 |
89 219
|
logge0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( log ` n ) ) |
| 221 |
39
|
lep1d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) <_ ( ( log ` n ) + 1 ) ) |
| 222 |
218 39 41 220 221
|
letrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( log ` n ) + 1 ) ) |
| 223 |
222
|
adantr |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 = n ) -> 0 <_ ( ( log ` n ) + 1 ) ) |
| 224 |
217 223
|
eqbrtrd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 = n ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) <_ ( ( log ` n ) + 1 ) ) |
| 225 |
|
elfzle1 |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> 1 <_ n ) |
| 226 |
225
|
adantl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ n ) |
| 227 |
40 89
|
leloed |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 <_ n <-> ( 1 < n \/ 1 = n ) ) ) |
| 228 |
226 227
|
mpbid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 < n \/ 1 = n ) ) |
| 229 |
186 224 228
|
mpjaodan |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) <_ ( ( log ` n ) + 1 ) ) |
| 230 |
102 41 38 112 229
|
lemul2ad |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) <_ ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) |
| 231 |
29 103 42 230
|
fsumle |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) |
| 232 |
104 79 78 111 231
|
lemul2ad |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) <_ ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) |
| 233 |
105 80 53 232
|
lesub2dd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) <_ ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) |
| 234 |
81 106 15 233
|
lediv1dd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) <_ ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) |
| 235 |
234
|
adantrr |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) <_ ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) |
| 236 |
86 88 107 82 235
|
lo1le |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) ) e. <_O(1) ) |
| 237 |
108
|
a1i |
|- ( ph -> 2 e. RR+ ) |
| 238 |
237 4
|
rpmulcld |
|- ( ph -> ( 2 x. B ) e. RR+ ) |
| 239 |
238
|
rpred |
|- ( ph -> ( 2 x. B ) e. RR ) |
| 240 |
239
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. B ) e. RR ) |
| 241 |
10 26
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 / ( log ` x ) ) e. RR ) |
| 242 |
10 241
|
readdcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 + ( 1 / ( log ` x ) ) ) e. RR ) |
| 243 |
|
ioossre |
|- ( 1 (,) +oo ) C_ RR |
| 244 |
|
lo1const |
|- ( ( ( 1 (,) +oo ) C_ RR /\ ( 2 x. B ) e. RR ) -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. B ) ) e. <_O(1) ) |
| 245 |
243 239 244
|
sylancr |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. B ) ) e. <_O(1) ) |
| 246 |
|
lo1const |
|- ( ( ( 1 (,) +oo ) C_ RR /\ 1 e. RR ) -> ( x e. ( 1 (,) +oo ) |-> 1 ) e. <_O(1) ) |
| 247 |
243 86 246
|
sylancr |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> 1 ) e. <_O(1) ) |
| 248 |
|
divlogrlim |
|- ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 |
| 249 |
|
rlimo1 |
|- ( ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) |
| 250 |
248 249
|
mp1i |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) |
| 251 |
241 250
|
o1lo1d |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. <_O(1) ) |
| 252 |
10 241 247 251
|
lo1add |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 1 + ( 1 / ( log ` x ) ) ) ) e. <_O(1) ) |
| 253 |
238
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. B ) e. RR+ ) |
| 254 |
253
|
rpge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( 2 x. B ) ) |
| 255 |
240 242 245 252 254
|
lo1mul |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) e. <_O(1) ) |
| 256 |
240 242
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) e. RR ) |
| 257 |
83 15
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) e. RR ) |
| 258 |
22 10
|
readdcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) + 1 ) e. RR ) |
| 259 |
4
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> B e. RR+ ) |
| 260 |
259
|
rpred |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> B e. RR ) |
| 261 |
258 260
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) + 1 ) x. B ) e. RR ) |
| 262 |
32
|
nnrecred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. RR ) |
| 263 |
29 262
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) e. RR ) |
| 264 |
263 260
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) x. B ) e. RR ) |
| 265 |
38 30
|
rerpdivcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / x ) e. RR ) |
| 266 |
260
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> B e. RR ) |
| 267 |
262 266
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 / n ) x. B ) e. RR ) |
| 268 |
34
|
rpcnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. CC ) |
| 269 |
34
|
rpne0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) =/= 0 ) |
| 270 |
37 268 269
|
absdivd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) / ( abs ` ( x / n ) ) ) ) |
| 271 |
7
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) |
| 272 |
271 32
|
nndivred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) |
| 273 |
34
|
rpge0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( x / n ) ) |
| 274 |
272 273
|
absidd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( x / n ) ) = ( x / n ) ) |
| 275 |
274
|
oveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / ( abs ` ( x / n ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) ) |
| 276 |
270 275
|
eqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) ) |
| 277 |
50
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) |
| 278 |
89
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) |
| 279 |
51
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x =/= 0 ) |
| 280 |
32
|
nnne0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) |
| 281 |
47 277 278 279 280
|
divdiv2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) = ( ( ( abs ` ( R ` ( x / n ) ) ) x. n ) / x ) ) |
| 282 |
47 278 277 279
|
div23d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. n ) / x ) = ( ( ( abs ` ( R ` ( x / n ) ) ) / x ) x. n ) ) |
| 283 |
276 281 282
|
3eqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) = ( ( ( abs ` ( R ` ( x / n ) ) ) / x ) x. n ) ) |
| 284 |
|
fveq2 |
|- ( y = ( x / n ) -> ( R ` y ) = ( R ` ( x / n ) ) ) |
| 285 |
|
id |
|- ( y = ( x / n ) -> y = ( x / n ) ) |
| 286 |
284 285
|
oveq12d |
|- ( y = ( x / n ) -> ( ( R ` y ) / y ) = ( ( R ` ( x / n ) ) / ( x / n ) ) ) |
| 287 |
286
|
fveq2d |
|- ( y = ( x / n ) -> ( abs ` ( ( R ` y ) / y ) ) = ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) ) |
| 288 |
287
|
breq1d |
|- ( y = ( x / n ) -> ( ( abs ` ( ( R ` y ) / y ) ) <_ B <-> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) <_ B ) ) |
| 289 |
5
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A. y e. RR+ ( abs ` ( ( R ` y ) / y ) ) <_ B ) |
| 290 |
288 289 34
|
rspcdva |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) <_ B ) |
| 291 |
283 290
|
eqbrtrrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) / x ) x. n ) <_ B ) |
| 292 |
265 266 33
|
lemuldivd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( abs ` ( R ` ( x / n ) ) ) / x ) x. n ) <_ B <-> ( ( abs ` ( R ` ( x / n ) ) ) / x ) <_ ( B / n ) ) ) |
| 293 |
291 292
|
mpbid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / x ) <_ ( B / n ) ) |
| 294 |
266
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> B e. CC ) |
| 295 |
294 278 280
|
divrec2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( B / n ) = ( ( 1 / n ) x. B ) ) |
| 296 |
293 295
|
breqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / x ) <_ ( ( 1 / n ) x. B ) ) |
| 297 |
29 265 267 296
|
fsumle |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) / x ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 / n ) x. B ) ) |
| 298 |
29 50 47 51
|
fsumdivc |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) / x ) ) |
| 299 |
259
|
rpcnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> B e. CC ) |
| 300 |
262
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. CC ) |
| 301 |
29 299 300
|
fsummulc1 |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) x. B ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 / n ) x. B ) ) |
| 302 |
297 298 301
|
3brtr4d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) x. B ) ) |
| 303 |
259
|
rpge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ B ) |
| 304 |
|
harmonicubnd |
|- ( ( x e. RR /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) |
| 305 |
7 14 304
|
syl2anc |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) |
| 306 |
263 258 260 303 305
|
lemul1ad |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) x. B ) <_ ( ( ( log ` x ) + 1 ) x. B ) ) |
| 307 |
257 264 261 302 306
|
letrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) <_ ( ( ( log ` x ) + 1 ) x. B ) ) |
| 308 |
257 261 78 111 307
|
lemul2ad |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) ) <_ ( ( 2 / ( log ` x ) ) x. ( ( ( log ` x ) + 1 ) x. B ) ) ) |
| 309 |
28 48 50 51
|
divassd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) = ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) ) ) |
| 310 |
242
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 + ( 1 / ( log ` x ) ) ) e. CC ) |
| 311 |
25 299 310
|
mul32d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) = ( ( 2 x. ( 1 + ( 1 / ( log ` x ) ) ) ) x. B ) ) |
| 312 |
|
1cnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. CC ) |
| 313 |
23 312 23 27
|
divdird |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) + 1 ) / ( log ` x ) ) = ( ( ( log ` x ) / ( log ` x ) ) + ( 1 / ( log ` x ) ) ) ) |
| 314 |
23 27
|
dividd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / ( log ` x ) ) = 1 ) |
| 315 |
314
|
oveq1d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) / ( log ` x ) ) + ( 1 / ( log ` x ) ) ) = ( 1 + ( 1 / ( log ` x ) ) ) ) |
| 316 |
313 315
|
eqtr2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 + ( 1 / ( log ` x ) ) ) = ( ( ( log ` x ) + 1 ) / ( log ` x ) ) ) |
| 317 |
316
|
oveq2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( 1 + ( 1 / ( log ` x ) ) ) ) = ( 2 x. ( ( ( log ` x ) + 1 ) / ( log ` x ) ) ) ) |
| 318 |
23 312
|
addcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) + 1 ) e. CC ) |
| 319 |
25 23 318 27
|
div32d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( ( log ` x ) + 1 ) ) = ( 2 x. ( ( ( log ` x ) + 1 ) / ( log ` x ) ) ) ) |
| 320 |
317 319
|
eqtr4d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( 1 + ( 1 / ( log ` x ) ) ) ) = ( ( 2 / ( log ` x ) ) x. ( ( log ` x ) + 1 ) ) ) |
| 321 |
320
|
oveq1d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. ( 1 + ( 1 / ( log ` x ) ) ) ) x. B ) = ( ( ( 2 / ( log ` x ) ) x. ( ( log ` x ) + 1 ) ) x. B ) ) |
| 322 |
28 318 299
|
mulassd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. ( ( log ` x ) + 1 ) ) x. B ) = ( ( 2 / ( log ` x ) ) x. ( ( ( log ` x ) + 1 ) x. B ) ) ) |
| 323 |
311 321 322
|
3eqtrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) = ( ( 2 / ( log ` x ) ) x. ( ( ( log ` x ) + 1 ) x. B ) ) ) |
| 324 |
308 309 323
|
3brtr4d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) <_ ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) |
| 325 |
324
|
adantrr |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) <_ ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) |
| 326 |
86 255 256 85 325
|
lo1le |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) ) e. <_O(1) ) |
| 327 |
82 85 236 326
|
lo1add |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) ) ) e. <_O(1) ) |
| 328 |
75 327
|
eqeltrrd |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) e. <_O(1) ) |