Step |
Hyp |
Ref |
Expression |
1 |
|
pntsval.1 |
|- S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) |
2 |
|
pntrlog2bnd.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
3 |
|
pntrlog2bnd.t |
|- T = ( a e. RR |-> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) ) |
4 |
|
pntrlog2bndlem5.1 |
|- ( ph -> B e. RR+ ) |
5 |
|
pntrlog2bndlem5.2 |
|- ( ph -> A. y e. RR+ ( abs ` ( ( R ` y ) / y ) ) <_ B ) |
6 |
|
elioore |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
7 |
6
|
adantl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) |
8 |
|
1rp |
|- 1 e. RR+ |
9 |
8
|
a1i |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) |
10 |
|
1red |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
11 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
12 |
11
|
adantl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) |
13 |
12
|
simpld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) |
14 |
10 7 13
|
ltled |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) |
15 |
7 9 14
|
rpgecld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) |
16 |
2
|
pntrf |
|- R : RR+ --> RR |
17 |
16
|
ffvelrni |
|- ( x e. RR+ -> ( R ` x ) e. RR ) |
18 |
15 17
|
syl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) e. RR ) |
19 |
18
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) e. CC ) |
20 |
19
|
abscld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` x ) ) e. RR ) |
21 |
20
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` x ) ) e. CC ) |
22 |
15
|
relogcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) |
23 |
22
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) |
24 |
21 23
|
mulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. CC ) |
25 |
|
2cnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) |
26 |
7 13
|
rplogcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) |
27 |
26
|
rpne0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) |
28 |
25 23 27
|
divcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. CC ) |
29 |
|
fzfid |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
30 |
15
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) |
31 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
32 |
31
|
adantl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
33 |
32
|
nnrpd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
34 |
30 33
|
rpdivcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
35 |
16
|
ffvelrni |
|- ( ( x / n ) e. RR+ -> ( R ` ( x / n ) ) e. RR ) |
36 |
34 35
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. RR ) |
37 |
36
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. CC ) |
38 |
37
|
abscld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) e. RR ) |
39 |
33
|
relogcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) |
40 |
|
1red |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) |
41 |
39 40
|
readdcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` n ) + 1 ) e. RR ) |
42 |
38 41
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) e. RR ) |
43 |
42
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) e. CC ) |
44 |
29 43
|
fsumcl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) e. CC ) |
45 |
28 44
|
mulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) e. CC ) |
46 |
24 45
|
subcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) e. CC ) |
47 |
38
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) e. CC ) |
48 |
29 47
|
fsumcl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) e. CC ) |
49 |
28 48
|
mulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) e. CC ) |
50 |
7
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) |
51 |
15
|
rpne0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) |
52 |
46 49 50 51
|
divdird |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) / x ) = ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) ) ) |
53 |
20 22
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. RR ) |
54 |
53
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. CC ) |
55 |
54 45 49
|
subsubd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) ) |
56 |
28 44 48
|
subdid |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) ) |
57 |
29 43 47
|
fsumsub |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( abs ` ( R ` ( x / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) |
58 |
41
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` n ) + 1 ) e. CC ) |
59 |
|
1cnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) |
60 |
47 58 59
|
subdid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( log ` n ) + 1 ) - 1 ) ) = ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( ( abs ` ( R ` ( x / n ) ) ) x. 1 ) ) ) |
61 |
39
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. CC ) |
62 |
61 59
|
pncand |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` n ) + 1 ) - 1 ) = ( log ` n ) ) |
63 |
62
|
oveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( ( log ` n ) + 1 ) - 1 ) ) = ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) |
64 |
47
|
mulid1d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. 1 ) = ( abs ` ( R ` ( x / n ) ) ) ) |
65 |
64
|
oveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( ( abs ` ( R ` ( x / n ) ) ) x. 1 ) ) = ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( abs ` ( R ` ( x / n ) ) ) ) ) |
66 |
60 63 65
|
3eqtr3rd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( abs ` ( R ` ( x / n ) ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) |
67 |
66
|
sumeq2dv |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - ( abs ` ( R ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) |
68 |
57 67
|
eqtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) |
69 |
68
|
oveq2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) |
70 |
56 69
|
eqtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) |
71 |
70
|
oveq2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) ) = ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) |
72 |
55 71
|
eqtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) = ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) |
73 |
72
|
oveq1d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) ) / x ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) |
74 |
52 73
|
eqtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) |
75 |
74
|
mpteq2dva |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) ) |
76 |
|
2re |
|- 2 e. RR |
77 |
76
|
a1i |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) |
78 |
77 26
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. RR ) |
79 |
29 42
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) e. RR ) |
80 |
78 79
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) e. RR ) |
81 |
53 80
|
resubcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) e. RR ) |
82 |
81 15
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) e. RR ) |
83 |
29 38
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) e. RR ) |
84 |
78 83
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) e. RR ) |
85 |
84 15
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) e. RR ) |
86 |
|
1red |
|- ( ph -> 1 e. RR ) |
87 |
1 2 3
|
pntrlog2bndlem4 |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) e. <_O(1) |
88 |
87
|
a1i |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) e. <_O(1) ) |
89 |
32
|
nnred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR ) |
90 |
|
simpl |
|- ( ( a e. RR /\ a e. RR+ ) -> a e. RR ) |
91 |
|
simpr |
|- ( ( a e. RR /\ a e. RR+ ) -> a e. RR+ ) |
92 |
91
|
relogcld |
|- ( ( a e. RR /\ a e. RR+ ) -> ( log ` a ) e. RR ) |
93 |
90 92
|
remulcld |
|- ( ( a e. RR /\ a e. RR+ ) -> ( a x. ( log ` a ) ) e. RR ) |
94 |
|
0red |
|- ( ( a e. RR /\ -. a e. RR+ ) -> 0 e. RR ) |
95 |
93 94
|
ifclda |
|- ( a e. RR -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) e. RR ) |
96 |
3 95
|
fmpti |
|- T : RR --> RR |
97 |
96
|
ffvelrni |
|- ( n e. RR -> ( T ` n ) e. RR ) |
98 |
89 97
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` n ) e. RR ) |
99 |
89 40
|
resubcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n - 1 ) e. RR ) |
100 |
96
|
ffvelrni |
|- ( ( n - 1 ) e. RR -> ( T ` ( n - 1 ) ) e. RR ) |
101 |
99 100
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( T ` ( n - 1 ) ) e. RR ) |
102 |
98 101
|
resubcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) e. RR ) |
103 |
38 102
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. RR ) |
104 |
29 103
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) e. RR ) |
105 |
78 104
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) e. RR ) |
106 |
53 105
|
resubcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) e. RR ) |
107 |
106 15
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) e. RR ) |
108 |
|
2rp |
|- 2 e. RR+ |
109 |
108
|
a1i |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR+ ) |
110 |
109
|
rpge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ 2 ) |
111 |
77 26 110
|
divge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( 2 / ( log ` x ) ) ) |
112 |
37
|
absge0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( R ` ( x / n ) ) ) ) |
113 |
33
|
adantr |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> n e. RR+ ) |
114 |
113
|
rpcnd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> n e. CC ) |
115 |
61
|
adantr |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( log ` n ) e. CC ) |
116 |
114 115
|
mulcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n x. ( log ` n ) ) e. CC ) |
117 |
|
simpr |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> 1 < n ) |
118 |
|
1re |
|- 1 e. RR |
119 |
113
|
rpred |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> n e. RR ) |
120 |
|
difrp |
|- ( ( 1 e. RR /\ n e. RR ) -> ( 1 < n <-> ( n - 1 ) e. RR+ ) ) |
121 |
118 119 120
|
sylancr |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( 1 < n <-> ( n - 1 ) e. RR+ ) ) |
122 |
117 121
|
mpbid |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n - 1 ) e. RR+ ) |
123 |
122
|
relogcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( log ` ( n - 1 ) ) e. RR ) |
124 |
123
|
recnd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( log ` ( n - 1 ) ) e. CC ) |
125 |
114 124
|
mulcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n x. ( log ` ( n - 1 ) ) ) e. CC ) |
126 |
116 125 124
|
subsubd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( log ` n ) ) - ( ( n x. ( log ` ( n - 1 ) ) ) - ( log ` ( n - 1 ) ) ) ) = ( ( ( n x. ( log ` n ) ) - ( n x. ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) ) |
127 |
|
rpre |
|- ( n e. RR+ -> n e. RR ) |
128 |
|
eleq1 |
|- ( a = n -> ( a e. RR+ <-> n e. RR+ ) ) |
129 |
|
id |
|- ( a = n -> a = n ) |
130 |
|
fveq2 |
|- ( a = n -> ( log ` a ) = ( log ` n ) ) |
131 |
129 130
|
oveq12d |
|- ( a = n -> ( a x. ( log ` a ) ) = ( n x. ( log ` n ) ) ) |
132 |
128 131
|
ifbieq1d |
|- ( a = n -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) ) |
133 |
|
ovex |
|- ( n x. ( log ` n ) ) e. _V |
134 |
|
c0ex |
|- 0 e. _V |
135 |
133 134
|
ifex |
|- if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) e. _V |
136 |
132 3 135
|
fvmpt |
|- ( n e. RR -> ( T ` n ) = if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) ) |
137 |
127 136
|
syl |
|- ( n e. RR+ -> ( T ` n ) = if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) ) |
138 |
|
iftrue |
|- ( n e. RR+ -> if ( n e. RR+ , ( n x. ( log ` n ) ) , 0 ) = ( n x. ( log ` n ) ) ) |
139 |
137 138
|
eqtrd |
|- ( n e. RR+ -> ( T ` n ) = ( n x. ( log ` n ) ) ) |
140 |
113 139
|
syl |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( T ` n ) = ( n x. ( log ` n ) ) ) |
141 |
|
rpre |
|- ( ( n - 1 ) e. RR+ -> ( n - 1 ) e. RR ) |
142 |
|
eleq1 |
|- ( a = ( n - 1 ) -> ( a e. RR+ <-> ( n - 1 ) e. RR+ ) ) |
143 |
|
id |
|- ( a = ( n - 1 ) -> a = ( n - 1 ) ) |
144 |
|
fveq2 |
|- ( a = ( n - 1 ) -> ( log ` a ) = ( log ` ( n - 1 ) ) ) |
145 |
143 144
|
oveq12d |
|- ( a = ( n - 1 ) -> ( a x. ( log ` a ) ) = ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) ) |
146 |
142 145
|
ifbieq1d |
|- ( a = ( n - 1 ) -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = if ( ( n - 1 ) e. RR+ , ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) , 0 ) ) |
147 |
|
ovex |
|- ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) e. _V |
148 |
147 134
|
ifex |
|- if ( ( n - 1 ) e. RR+ , ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) , 0 ) e. _V |
149 |
146 3 148
|
fvmpt |
|- ( ( n - 1 ) e. RR -> ( T ` ( n - 1 ) ) = if ( ( n - 1 ) e. RR+ , ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) , 0 ) ) |
150 |
141 149
|
syl |
|- ( ( n - 1 ) e. RR+ -> ( T ` ( n - 1 ) ) = if ( ( n - 1 ) e. RR+ , ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) , 0 ) ) |
151 |
|
iftrue |
|- ( ( n - 1 ) e. RR+ -> if ( ( n - 1 ) e. RR+ , ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) , 0 ) = ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) ) |
152 |
150 151
|
eqtrd |
|- ( ( n - 1 ) e. RR+ -> ( T ` ( n - 1 ) ) = ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) ) |
153 |
122 152
|
syl |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( T ` ( n - 1 ) ) = ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) ) |
154 |
|
1cnd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> 1 e. CC ) |
155 |
114 154 124
|
subdird |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n - 1 ) x. ( log ` ( n - 1 ) ) ) = ( ( n x. ( log ` ( n - 1 ) ) ) - ( 1 x. ( log ` ( n - 1 ) ) ) ) ) |
156 |
124
|
mulid2d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( 1 x. ( log ` ( n - 1 ) ) ) = ( log ` ( n - 1 ) ) ) |
157 |
156
|
oveq2d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( log ` ( n - 1 ) ) ) - ( 1 x. ( log ` ( n - 1 ) ) ) ) = ( ( n x. ( log ` ( n - 1 ) ) ) - ( log ` ( n - 1 ) ) ) ) |
158 |
153 155 157
|
3eqtrd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( T ` ( n - 1 ) ) = ( ( n x. ( log ` ( n - 1 ) ) ) - ( log ` ( n - 1 ) ) ) ) |
159 |
140 158
|
oveq12d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = ( ( n x. ( log ` n ) ) - ( ( n x. ( log ` ( n - 1 ) ) ) - ( log ` ( n - 1 ) ) ) ) ) |
160 |
114 115 124
|
subdid |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) = ( ( n x. ( log ` n ) ) - ( n x. ( log ` ( n - 1 ) ) ) ) ) |
161 |
160
|
oveq1d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) = ( ( ( n x. ( log ` n ) ) - ( n x. ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) ) |
162 |
126 159 161
|
3eqtr4d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) ) |
163 |
113
|
relogcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( log ` n ) e. RR ) |
164 |
163 123
|
resubcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( log ` n ) - ( log ` ( n - 1 ) ) ) e. RR ) |
165 |
164
|
recnd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( log ` n ) - ( log ` ( n - 1 ) ) ) e. CC ) |
166 |
114 154 165
|
subdird |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n - 1 ) x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) = ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) - ( 1 x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) ) ) |
167 |
165
|
mulid2d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( 1 x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) = ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) |
168 |
167
|
oveq2d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) - ( 1 x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) ) = ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) - ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) ) |
169 |
119 164
|
remulcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) e. RR ) |
170 |
169
|
recnd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) e. CC ) |
171 |
170 115 124
|
subsub3d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) - ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) = ( ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) - ( log ` n ) ) ) |
172 |
166 168 171
|
3eqtrd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n - 1 ) x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) = ( ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) - ( log ` n ) ) ) |
173 |
114 154
|
npcand |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n - 1 ) + 1 ) = n ) |
174 |
173
|
fveq2d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( log ` ( ( n - 1 ) + 1 ) ) = ( log ` n ) ) |
175 |
174
|
oveq1d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( log ` ( ( n - 1 ) + 1 ) ) - ( log ` ( n - 1 ) ) ) = ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) |
176 |
|
logdifbnd |
|- ( ( n - 1 ) e. RR+ -> ( ( log ` ( ( n - 1 ) + 1 ) ) - ( log ` ( n - 1 ) ) ) <_ ( 1 / ( n - 1 ) ) ) |
177 |
122 176
|
syl |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( log ` ( ( n - 1 ) + 1 ) ) - ( log ` ( n - 1 ) ) ) <_ ( 1 / ( n - 1 ) ) ) |
178 |
175 177
|
eqbrtrrd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( log ` n ) - ( log ` ( n - 1 ) ) ) <_ ( 1 / ( n - 1 ) ) ) |
179 |
|
1red |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> 1 e. RR ) |
180 |
164 179 122
|
lemuldiv2d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( ( n - 1 ) x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) <_ 1 <-> ( ( log ` n ) - ( log ` ( n - 1 ) ) ) <_ ( 1 / ( n - 1 ) ) ) ) |
181 |
178 180
|
mpbird |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n - 1 ) x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) <_ 1 ) |
182 |
172 181
|
eqbrtrrd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) - ( log ` n ) ) <_ 1 ) |
183 |
169 123
|
readdcld |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) e. RR ) |
184 |
183 163 179
|
lesubadd2d |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) - ( log ` n ) ) <_ 1 <-> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) <_ ( ( log ` n ) + 1 ) ) ) |
185 |
182 184
|
mpbid |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( n x. ( ( log ` n ) - ( log ` ( n - 1 ) ) ) ) + ( log ` ( n - 1 ) ) ) <_ ( ( log ` n ) + 1 ) ) |
186 |
162 185
|
eqbrtrd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 < n ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) <_ ( ( log ` n ) + 1 ) ) |
187 |
|
fveq2 |
|- ( n = 1 -> ( T ` n ) = ( T ` 1 ) ) |
188 |
|
id |
|- ( a = 1 -> a = 1 ) |
189 |
188 8
|
eqeltrdi |
|- ( a = 1 -> a e. RR+ ) |
190 |
189
|
iftrued |
|- ( a = 1 -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = ( a x. ( log ` a ) ) ) |
191 |
|
fveq2 |
|- ( a = 1 -> ( log ` a ) = ( log ` 1 ) ) |
192 |
|
log1 |
|- ( log ` 1 ) = 0 |
193 |
191 192
|
eqtrdi |
|- ( a = 1 -> ( log ` a ) = 0 ) |
194 |
188 193
|
oveq12d |
|- ( a = 1 -> ( a x. ( log ` a ) ) = ( 1 x. 0 ) ) |
195 |
|
ax-1cn |
|- 1 e. CC |
196 |
195
|
mul01i |
|- ( 1 x. 0 ) = 0 |
197 |
194 196
|
eqtrdi |
|- ( a = 1 -> ( a x. ( log ` a ) ) = 0 ) |
198 |
190 197
|
eqtrd |
|- ( a = 1 -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = 0 ) |
199 |
198 3 134
|
fvmpt |
|- ( 1 e. RR -> ( T ` 1 ) = 0 ) |
200 |
118 199
|
ax-mp |
|- ( T ` 1 ) = 0 |
201 |
187 200
|
eqtrdi |
|- ( n = 1 -> ( T ` n ) = 0 ) |
202 |
|
oveq1 |
|- ( n = 1 -> ( n - 1 ) = ( 1 - 1 ) ) |
203 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
204 |
202 203
|
eqtrdi |
|- ( n = 1 -> ( n - 1 ) = 0 ) |
205 |
204
|
fveq2d |
|- ( n = 1 -> ( T ` ( n - 1 ) ) = ( T ` 0 ) ) |
206 |
|
0re |
|- 0 e. RR |
207 |
|
rpne0 |
|- ( a e. RR+ -> a =/= 0 ) |
208 |
207
|
necon2bi |
|- ( a = 0 -> -. a e. RR+ ) |
209 |
208
|
iffalsed |
|- ( a = 0 -> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) = 0 ) |
210 |
209 3 134
|
fvmpt |
|- ( 0 e. RR -> ( T ` 0 ) = 0 ) |
211 |
206 210
|
ax-mp |
|- ( T ` 0 ) = 0 |
212 |
205 211
|
eqtrdi |
|- ( n = 1 -> ( T ` ( n - 1 ) ) = 0 ) |
213 |
201 212
|
oveq12d |
|- ( n = 1 -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = ( 0 - 0 ) ) |
214 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
215 |
213 214
|
eqtrdi |
|- ( n = 1 -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = 0 ) |
216 |
215
|
eqcoms |
|- ( 1 = n -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = 0 ) |
217 |
216
|
adantl |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 = n ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) = 0 ) |
218 |
|
0red |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 e. RR ) |
219 |
32
|
nnge1d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ n ) |
220 |
89 219
|
logge0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( log ` n ) ) |
221 |
39
|
lep1d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) <_ ( ( log ` n ) + 1 ) ) |
222 |
218 39 41 220 221
|
letrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( log ` n ) + 1 ) ) |
223 |
222
|
adantr |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 = n ) -> 0 <_ ( ( log ` n ) + 1 ) ) |
224 |
217 223
|
eqbrtrd |
|- ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ 1 = n ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) <_ ( ( log ` n ) + 1 ) ) |
225 |
|
elfzle1 |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> 1 <_ n ) |
226 |
225
|
adantl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ n ) |
227 |
40 89
|
leloed |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 <_ n <-> ( 1 < n \/ 1 = n ) ) ) |
228 |
226 227
|
mpbid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 < n \/ 1 = n ) ) |
229 |
186 224 228
|
mpjaodan |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( T ` n ) - ( T ` ( n - 1 ) ) ) <_ ( ( log ` n ) + 1 ) ) |
230 |
102 41 38 112 229
|
lemul2ad |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) <_ ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) |
231 |
29 103 42 230
|
fsumle |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) |
232 |
104 79 78 111 231
|
lemul2ad |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) <_ ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) |
233 |
105 80 53 232
|
lesub2dd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) <_ ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) ) |
234 |
81 106 15 233
|
lediv1dd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) <_ ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) |
235 |
234
|
adantrr |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) <_ ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( T ` n ) - ( T ` ( n - 1 ) ) ) ) ) ) / x ) ) |
236 |
86 88 107 82 235
|
lo1le |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) ) e. <_O(1) ) |
237 |
108
|
a1i |
|- ( ph -> 2 e. RR+ ) |
238 |
237 4
|
rpmulcld |
|- ( ph -> ( 2 x. B ) e. RR+ ) |
239 |
238
|
rpred |
|- ( ph -> ( 2 x. B ) e. RR ) |
240 |
239
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. B ) e. RR ) |
241 |
10 26
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 / ( log ` x ) ) e. RR ) |
242 |
10 241
|
readdcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 + ( 1 / ( log ` x ) ) ) e. RR ) |
243 |
|
ioossre |
|- ( 1 (,) +oo ) C_ RR |
244 |
|
lo1const |
|- ( ( ( 1 (,) +oo ) C_ RR /\ ( 2 x. B ) e. RR ) -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. B ) ) e. <_O(1) ) |
245 |
243 239 244
|
sylancr |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. B ) ) e. <_O(1) ) |
246 |
|
lo1const |
|- ( ( ( 1 (,) +oo ) C_ RR /\ 1 e. RR ) -> ( x e. ( 1 (,) +oo ) |-> 1 ) e. <_O(1) ) |
247 |
243 86 246
|
sylancr |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> 1 ) e. <_O(1) ) |
248 |
|
divlogrlim |
|- ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 |
249 |
|
rlimo1 |
|- ( ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) |
250 |
248 249
|
mp1i |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. O(1) ) |
251 |
241 250
|
o1lo1d |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) e. <_O(1) ) |
252 |
10 241 247 251
|
lo1add |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( 1 + ( 1 / ( log ` x ) ) ) ) e. <_O(1) ) |
253 |
238
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. B ) e. RR+ ) |
254 |
253
|
rpge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( 2 x. B ) ) |
255 |
240 242 245 252 254
|
lo1mul |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) e. <_O(1) ) |
256 |
240 242
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) e. RR ) |
257 |
83 15
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) e. RR ) |
258 |
22 10
|
readdcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) + 1 ) e. RR ) |
259 |
4
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> B e. RR+ ) |
260 |
259
|
rpred |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> B e. RR ) |
261 |
258 260
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) + 1 ) x. B ) e. RR ) |
262 |
32
|
nnrecred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. RR ) |
263 |
29 262
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) e. RR ) |
264 |
263 260
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) x. B ) e. RR ) |
265 |
38 30
|
rerpdivcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / x ) e. RR ) |
266 |
260
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> B e. RR ) |
267 |
262 266
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 / n ) x. B ) e. RR ) |
268 |
34
|
rpcnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. CC ) |
269 |
34
|
rpne0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) =/= 0 ) |
270 |
37 268 269
|
absdivd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) / ( abs ` ( x / n ) ) ) ) |
271 |
7
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) |
272 |
271 32
|
nndivred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) |
273 |
34
|
rpge0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( x / n ) ) |
274 |
272 273
|
absidd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( x / n ) ) = ( x / n ) ) |
275 |
274
|
oveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / ( abs ` ( x / n ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) ) |
276 |
270 275
|
eqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) ) |
277 |
50
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) |
278 |
89
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) |
279 |
51
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x =/= 0 ) |
280 |
32
|
nnne0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) |
281 |
47 277 278 279 280
|
divdiv2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) = ( ( ( abs ` ( R ` ( x / n ) ) ) x. n ) / x ) ) |
282 |
47 278 277 279
|
div23d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. n ) / x ) = ( ( ( abs ` ( R ` ( x / n ) ) ) / x ) x. n ) ) |
283 |
276 281 282
|
3eqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) = ( ( ( abs ` ( R ` ( x / n ) ) ) / x ) x. n ) ) |
284 |
|
fveq2 |
|- ( y = ( x / n ) -> ( R ` y ) = ( R ` ( x / n ) ) ) |
285 |
|
id |
|- ( y = ( x / n ) -> y = ( x / n ) ) |
286 |
284 285
|
oveq12d |
|- ( y = ( x / n ) -> ( ( R ` y ) / y ) = ( ( R ` ( x / n ) ) / ( x / n ) ) ) |
287 |
286
|
fveq2d |
|- ( y = ( x / n ) -> ( abs ` ( ( R ` y ) / y ) ) = ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) ) |
288 |
287
|
breq1d |
|- ( y = ( x / n ) -> ( ( abs ` ( ( R ` y ) / y ) ) <_ B <-> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) <_ B ) ) |
289 |
5
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A. y e. RR+ ( abs ` ( ( R ` y ) / y ) ) <_ B ) |
290 |
288 289 34
|
rspcdva |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) <_ B ) |
291 |
283 290
|
eqbrtrrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) / x ) x. n ) <_ B ) |
292 |
265 266 33
|
lemuldivd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( abs ` ( R ` ( x / n ) ) ) / x ) x. n ) <_ B <-> ( ( abs ` ( R ` ( x / n ) ) ) / x ) <_ ( B / n ) ) ) |
293 |
291 292
|
mpbid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / x ) <_ ( B / n ) ) |
294 |
266
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> B e. CC ) |
295 |
294 278 280
|
divrec2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( B / n ) = ( ( 1 / n ) x. B ) ) |
296 |
293 295
|
breqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / x ) <_ ( ( 1 / n ) x. B ) ) |
297 |
29 265 267 296
|
fsumle |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) / x ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 / n ) x. B ) ) |
298 |
29 50 47 51
|
fsumdivc |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) / x ) ) |
299 |
259
|
rpcnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> B e. CC ) |
300 |
262
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. CC ) |
301 |
29 299 300
|
fsummulc1 |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) x. B ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 / n ) x. B ) ) |
302 |
297 298 301
|
3brtr4d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) x. B ) ) |
303 |
259
|
rpge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ B ) |
304 |
|
harmonicubnd |
|- ( ( x e. RR /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) |
305 |
7 14 304
|
syl2anc |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) |
306 |
263 258 260 303 305
|
lemul1ad |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) x. B ) <_ ( ( ( log ` x ) + 1 ) x. B ) ) |
307 |
257 264 261 302 306
|
letrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) <_ ( ( ( log ` x ) + 1 ) x. B ) ) |
308 |
257 261 78 111 307
|
lemul2ad |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) ) <_ ( ( 2 / ( log ` x ) ) x. ( ( ( log ` x ) + 1 ) x. B ) ) ) |
309 |
28 48 50 51
|
divassd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) = ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) / x ) ) ) |
310 |
242
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 + ( 1 / ( log ` x ) ) ) e. CC ) |
311 |
25 299 310
|
mul32d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) = ( ( 2 x. ( 1 + ( 1 / ( log ` x ) ) ) ) x. B ) ) |
312 |
|
1cnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. CC ) |
313 |
23 312 23 27
|
divdird |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) + 1 ) / ( log ` x ) ) = ( ( ( log ` x ) / ( log ` x ) ) + ( 1 / ( log ` x ) ) ) ) |
314 |
23 27
|
dividd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / ( log ` x ) ) = 1 ) |
315 |
314
|
oveq1d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) / ( log ` x ) ) + ( 1 / ( log ` x ) ) ) = ( 1 + ( 1 / ( log ` x ) ) ) ) |
316 |
313 315
|
eqtr2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 + ( 1 / ( log ` x ) ) ) = ( ( ( log ` x ) + 1 ) / ( log ` x ) ) ) |
317 |
316
|
oveq2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( 1 + ( 1 / ( log ` x ) ) ) ) = ( 2 x. ( ( ( log ` x ) + 1 ) / ( log ` x ) ) ) ) |
318 |
23 312
|
addcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) + 1 ) e. CC ) |
319 |
25 23 318 27
|
div32d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( ( log ` x ) + 1 ) ) = ( 2 x. ( ( ( log ` x ) + 1 ) / ( log ` x ) ) ) ) |
320 |
317 319
|
eqtr4d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( 1 + ( 1 / ( log ` x ) ) ) ) = ( ( 2 / ( log ` x ) ) x. ( ( log ` x ) + 1 ) ) ) |
321 |
320
|
oveq1d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. ( 1 + ( 1 / ( log ` x ) ) ) ) x. B ) = ( ( ( 2 / ( log ` x ) ) x. ( ( log ` x ) + 1 ) ) x. B ) ) |
322 |
28 318 299
|
mulassd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. ( ( log ` x ) + 1 ) ) x. B ) = ( ( 2 / ( log ` x ) ) x. ( ( ( log ` x ) + 1 ) x. B ) ) ) |
323 |
311 321 322
|
3eqtrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) = ( ( 2 / ( log ` x ) ) x. ( ( ( log ` x ) + 1 ) x. B ) ) ) |
324 |
308 309 323
|
3brtr4d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) <_ ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) |
325 |
324
|
adantrr |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) <_ ( ( 2 x. B ) x. ( 1 + ( 1 / ( log ` x ) ) ) ) ) |
326 |
86 255 256 85 325
|
lo1le |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) ) e. <_O(1) ) |
327 |
82 85 236 326
|
lo1add |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( ( log ` n ) + 1 ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( R ` ( x / n ) ) ) ) / x ) ) ) e. <_O(1) ) |
328 |
75 327
|
eqeltrrd |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) e. <_O(1) ) |