Step |
Hyp |
Ref |
Expression |
1 |
|
pntsval.1 |
|- S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) |
2 |
|
pntrlog2bnd.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
3 |
|
pntrlog2bnd.t |
|- T = ( a e. RR |-> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) ) |
4 |
|
pntrlog2bndlem5.1 |
|- ( ph -> B e. RR+ ) |
5 |
|
pntrlog2bndlem5.2 |
|- ( ph -> A. y e. RR+ ( abs ` ( ( R ` y ) / y ) ) <_ B ) |
6 |
|
pntrlog2bndlem6.1 |
|- ( ph -> A e. RR ) |
7 |
|
pntrlog2bndlem6.2 |
|- ( ph -> 1 <_ A ) |
8 |
|
elioore |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
9 |
8
|
adantl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) |
10 |
|
1rp |
|- 1 e. RR+ |
11 |
10
|
a1i |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) |
12 |
|
1red |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
13 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
14 |
13
|
adantl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) |
15 |
14
|
simpld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) |
16 |
12 9 15
|
ltled |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) |
17 |
9 11 16
|
rpgecld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) |
18 |
2
|
pntrf |
|- R : RR+ --> RR |
19 |
18
|
ffvelrni |
|- ( x e. RR+ -> ( R ` x ) e. RR ) |
20 |
17 19
|
syl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) e. RR ) |
21 |
20
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( R ` x ) e. CC ) |
22 |
21
|
abscld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( R ` x ) ) e. RR ) |
23 |
17
|
relogcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) |
24 |
22 23
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. RR ) |
25 |
|
2re |
|- 2 e. RR |
26 |
25
|
a1i |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) |
27 |
9 15
|
rplogcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) |
28 |
26 27
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. RR ) |
29 |
|
fzfid |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
30 |
17
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) |
31 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
32 |
31
|
adantl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
33 |
32
|
nnrpd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
34 |
30 33
|
rpdivcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
35 |
18
|
ffvelrni |
|- ( ( x / n ) e. RR+ -> ( R ` ( x / n ) ) e. RR ) |
36 |
34 35
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. RR ) |
37 |
36
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. CC ) |
38 |
37
|
abscld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) e. RR ) |
39 |
33
|
relogcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) |
40 |
38 39
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) |
41 |
29 40
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) |
42 |
28 41
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) e. RR ) |
43 |
24 42
|
resubcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) e. RR ) |
44 |
43
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) e. CC ) |
45 |
|
fzfid |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) e. Fin ) |
46 |
|
ssun2 |
|- ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) C_ ( ( 1 ... ( |_ ` ( x / A ) ) ) u. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) |
47 |
1 2 3 4 5 6 7
|
pntrlog2bndlem6a |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) = ( ( 1 ... ( |_ ` ( x / A ) ) ) u. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) ) |
48 |
46 47
|
sseqtrrid |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) C_ ( 1 ... ( |_ ` x ) ) ) |
49 |
48
|
sselda |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> n e. ( 1 ... ( |_ ` x ) ) ) |
50 |
49 40
|
syldan |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) |
51 |
45 50
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) |
52 |
28 51
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) e. RR ) |
53 |
52
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) e. CC ) |
54 |
9
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) |
55 |
17
|
rpne0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) |
56 |
44 53 54 55
|
divdird |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) = ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) ) ) |
57 |
24
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) e. CC ) |
58 |
42
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) e. CC ) |
59 |
57 58 53
|
subsubd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) |
60 |
28
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. CC ) |
61 |
41
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. CC ) |
62 |
51
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. CC ) |
63 |
60 61 62
|
subdid |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) - sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) |
64 |
|
fzfid |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` ( x / A ) ) ) e. Fin ) |
65 |
|
ssun1 |
|- ( 1 ... ( |_ ` ( x / A ) ) ) C_ ( ( 1 ... ( |_ ` ( x / A ) ) ) u. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) |
66 |
65 47
|
sseqtrrid |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` ( x / A ) ) ) C_ ( 1 ... ( |_ ` x ) ) ) |
67 |
66
|
sselda |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ) -> n e. ( 1 ... ( |_ ` x ) ) ) |
68 |
67 40
|
syldan |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) |
69 |
64 68
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) |
70 |
69
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. CC ) |
71 |
10
|
a1i |
|- ( ph -> 1 e. RR+ ) |
72 |
6 71 7
|
rpgecld |
|- ( ph -> A e. RR+ ) |
73 |
72
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. RR+ ) |
74 |
9 73
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / A ) e. RR ) |
75 |
|
reflcl |
|- ( ( x / A ) e. RR -> ( |_ ` ( x / A ) ) e. RR ) |
76 |
74 75
|
syl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` ( x / A ) ) e. RR ) |
77 |
76
|
ltp1d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` ( x / A ) ) < ( ( |_ ` ( x / A ) ) + 1 ) ) |
78 |
|
fzdisj |
|- ( ( |_ ` ( x / A ) ) < ( ( |_ ` ( x / A ) ) + 1 ) -> ( ( 1 ... ( |_ ` ( x / A ) ) ) i^i ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) = (/) ) |
79 |
77 78
|
syl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 1 ... ( |_ ` ( x / A ) ) ) i^i ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) = (/) ) |
80 |
40
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. CC ) |
81 |
79 47 29 80
|
fsumsplit |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) = ( sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) + sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) |
82 |
70 62 81
|
mvrraddd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) - sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) |
83 |
82
|
oveq2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) - sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) |
84 |
63 83
|
eqtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) |
85 |
84
|
oveq2d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) = ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) |
86 |
59 85
|
eqtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) = ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) ) |
87 |
86
|
oveq1d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) |
88 |
56 87
|
eqtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) ) = ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) |
89 |
88
|
mpteq2dva |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) ) |
90 |
43 17
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) e. RR ) |
91 |
52 17
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) e. RR ) |
92 |
1 2 3 4 5
|
pntrlog2bndlem5 |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) e. <_O(1) ) |
93 |
|
ioossre |
|- ( 1 (,) +oo ) C_ RR |
94 |
93
|
a1i |
|- ( ph -> ( 1 (,) +oo ) C_ RR ) |
95 |
|
1red |
|- ( ph -> 1 e. RR ) |
96 |
25
|
a1i |
|- ( ph -> 2 e. RR ) |
97 |
4
|
rpred |
|- ( ph -> B e. RR ) |
98 |
72
|
relogcld |
|- ( ph -> ( log ` A ) e. RR ) |
99 |
98 95
|
readdcld |
|- ( ph -> ( ( log ` A ) + 1 ) e. RR ) |
100 |
97 99
|
remulcld |
|- ( ph -> ( B x. ( ( log ` A ) + 1 ) ) e. RR ) |
101 |
96 100
|
remulcld |
|- ( ph -> ( 2 x. ( B x. ( ( log ` A ) + 1 ) ) ) e. RR ) |
102 |
51 27
|
rerpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) e. RR ) |
103 |
97
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> B e. RR ) |
104 |
73
|
relogcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` A ) e. RR ) |
105 |
104 12
|
readdcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` A ) + 1 ) e. RR ) |
106 |
103 105
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( B x. ( ( log ` A ) + 1 ) ) e. RR ) |
107 |
9 106
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( B x. ( ( log ` A ) + 1 ) ) ) e. RR ) |
108 |
|
2rp |
|- 2 e. RR+ |
109 |
108
|
a1i |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR+ ) |
110 |
109
|
rpge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ 2 ) |
111 |
103 9
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( B x. x ) e. RR ) |
112 |
49 31
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> n e. NN ) |
113 |
112
|
nnrecred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( 1 / n ) e. RR ) |
114 |
45 113
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) e. RR ) |
115 |
111 114
|
remulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( B x. x ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) ) e. RR ) |
116 |
27
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( log ` x ) e. RR+ ) |
117 |
50 116
|
rerpdivcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) e. RR ) |
118 |
103
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> B e. RR ) |
119 |
9
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> x e. RR ) |
120 |
118 119
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( B x. x ) e. RR ) |
121 |
120 113
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( B x. x ) x. ( 1 / n ) ) e. RR ) |
122 |
49 38
|
syldan |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) e. RR ) |
123 |
119 112
|
nndivred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) |
124 |
118 123
|
remulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( B x. ( x / n ) ) e. RR ) |
125 |
49 33
|
syldan |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> n e. RR+ ) |
126 |
125
|
relogcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) |
127 |
17
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> x e. RR+ ) |
128 |
127
|
relogcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( log ` x ) e. RR ) |
129 |
49 37
|
syldan |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( R ` ( x / n ) ) e. CC ) |
130 |
129
|
absge0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( R ` ( x / n ) ) ) ) |
131 |
|
elfzle2 |
|- ( n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) -> n <_ ( |_ ` x ) ) |
132 |
131
|
adantl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> n <_ ( |_ ` x ) ) |
133 |
112
|
nnzd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> n e. ZZ ) |
134 |
|
flge |
|- ( ( x e. RR /\ n e. ZZ ) -> ( n <_ x <-> n <_ ( |_ ` x ) ) ) |
135 |
119 133 134
|
syl2anc |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( n <_ x <-> n <_ ( |_ ` x ) ) ) |
136 |
132 135
|
mpbird |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> n <_ x ) |
137 |
125 127
|
logled |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( n <_ x <-> ( log ` n ) <_ ( log ` x ) ) ) |
138 |
136 137
|
mpbid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( log ` n ) <_ ( log ` x ) ) |
139 |
126 128 122 130 138
|
lemul2ad |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) <_ ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` x ) ) ) |
140 |
50 122 116
|
ledivmul2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) <_ ( abs ` ( R ` ( x / n ) ) ) <-> ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) <_ ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` x ) ) ) ) |
141 |
139 140
|
mpbird |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) <_ ( abs ` ( R ` ( x / n ) ) ) ) |
142 |
123
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( x / n ) e. CC ) |
143 |
49 34
|
syldan |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
144 |
143
|
rpne0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( x / n ) =/= 0 ) |
145 |
129 142 144
|
absdivd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) / ( abs ` ( x / n ) ) ) ) |
146 |
17
|
rpge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ x ) |
147 |
146
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> 0 <_ x ) |
148 |
119 125 147
|
divge0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> 0 <_ ( x / n ) ) |
149 |
123 148
|
absidd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( abs ` ( x / n ) ) = ( x / n ) ) |
150 |
149
|
oveq2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / ( abs ` ( x / n ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) ) |
151 |
145 150
|
eqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) = ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) ) |
152 |
|
fveq2 |
|- ( y = ( x / n ) -> ( R ` y ) = ( R ` ( x / n ) ) ) |
153 |
|
id |
|- ( y = ( x / n ) -> y = ( x / n ) ) |
154 |
152 153
|
oveq12d |
|- ( y = ( x / n ) -> ( ( R ` y ) / y ) = ( ( R ` ( x / n ) ) / ( x / n ) ) ) |
155 |
154
|
fveq2d |
|- ( y = ( x / n ) -> ( abs ` ( ( R ` y ) / y ) ) = ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) ) |
156 |
155
|
breq1d |
|- ( y = ( x / n ) -> ( ( abs ` ( ( R ` y ) / y ) ) <_ B <-> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) <_ B ) ) |
157 |
5
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> A. y e. RR+ ( abs ` ( ( R ` y ) / y ) ) <_ B ) |
158 |
156 157 143
|
rspcdva |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( abs ` ( ( R ` ( x / n ) ) / ( x / n ) ) ) <_ B ) |
159 |
151 158
|
eqbrtrrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) <_ B ) |
160 |
122 118 143
|
ledivmul2d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) / ( x / n ) ) <_ B <-> ( abs ` ( R ` ( x / n ) ) ) <_ ( B x. ( x / n ) ) ) ) |
161 |
159 160
|
mpbid |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( abs ` ( R ` ( x / n ) ) ) <_ ( B x. ( x / n ) ) ) |
162 |
117 122 124 141 161
|
letrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) <_ ( B x. ( x / n ) ) ) |
163 |
118
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> B e. CC ) |
164 |
54
|
adantr |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> x e. CC ) |
165 |
112
|
nncnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> n e. CC ) |
166 |
112
|
nnne0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> n =/= 0 ) |
167 |
163 164 165 166
|
divassd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( B x. x ) / n ) = ( B x. ( x / n ) ) ) |
168 |
163 164
|
mulcld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( B x. x ) e. CC ) |
169 |
168 165 166
|
divrecd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( B x. x ) / n ) = ( ( B x. x ) x. ( 1 / n ) ) ) |
170 |
167 169
|
eqtr3d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( B x. ( x / n ) ) = ( ( B x. x ) x. ( 1 / n ) ) ) |
171 |
162 170
|
breqtrd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) <_ ( ( B x. x ) x. ( 1 / n ) ) ) |
172 |
45 117 121 171
|
fsumle |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) <_ sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( B x. x ) x. ( 1 / n ) ) ) |
173 |
23
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) |
174 |
49 80
|
syldan |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) e. CC ) |
175 |
27
|
rpne0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) |
176 |
45 173 174 175
|
fsumdivc |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) = sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) ) |
177 |
103
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> B e. CC ) |
178 |
177 54
|
mulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( B x. x ) e. CC ) |
179 |
113
|
recnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) -> ( 1 / n ) e. CC ) |
180 |
45 178 179
|
fsummulc2 |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( B x. x ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) ) = sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( B x. x ) x. ( 1 / n ) ) ) |
181 |
172 176 180
|
3brtr4d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) <_ ( ( B x. x ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) ) ) |
182 |
4
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> B e. RR+ ) |
183 |
182
|
rpge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ B ) |
184 |
103 9 183 146
|
mulge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( B x. x ) ) |
185 |
32
|
nnrecred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. RR ) |
186 |
29 185
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) e. RR ) |
187 |
23 104
|
resubcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) - ( log ` A ) ) e. RR ) |
188 |
23 12
|
readdcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) + 1 ) e. RR ) |
189 |
67 185
|
syldan |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ) -> ( 1 / n ) e. RR ) |
190 |
64 189
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) e. RR ) |
191 |
|
harmonicubnd |
|- ( ( x e. RR /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) |
192 |
9 16 191
|
syl2anc |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) |
193 |
17 73
|
relogdivd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` ( x / A ) ) = ( ( log ` x ) - ( log ` A ) ) ) |
194 |
17 73
|
rpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / A ) e. RR+ ) |
195 |
|
harmoniclbnd |
|- ( ( x / A ) e. RR+ -> ( log ` ( x / A ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) ) |
196 |
194 195
|
syl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` ( x / A ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) ) |
197 |
193 196
|
eqbrtrrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) - ( log ` A ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) ) |
198 |
186 187 188 190 192 197
|
le2subd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) ) <_ ( ( ( log ` x ) + 1 ) - ( ( log ` x ) - ( log ` A ) ) ) ) |
199 |
67 31
|
syl |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ) -> n e. NN ) |
200 |
199
|
nnrecred |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ) -> ( 1 / n ) e. RR ) |
201 |
64 200
|
fsumrecl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) e. RR ) |
202 |
201
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) e. CC ) |
203 |
114
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) e. CC ) |
204 |
32
|
nncnd |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) |
205 |
32
|
nnne0d |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) |
206 |
204 205
|
reccld |
|- ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. CC ) |
207 |
79 47 29 206
|
fsumsplit |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) = ( sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) + sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) ) ) |
208 |
202 203 207
|
mvrladdd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( 1 / n ) ) = sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) ) |
209 |
|
1cnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. CC ) |
210 |
104
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` A ) e. CC ) |
211 |
173 209 210
|
pnncand |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) + 1 ) - ( ( log ` x ) - ( log ` A ) ) ) = ( 1 + ( log ` A ) ) ) |
212 |
209 210 211
|
comraddd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) + 1 ) - ( ( log ` x ) - ( log ` A ) ) ) = ( ( log ` A ) + 1 ) ) |
213 |
198 208 212
|
3brtr3d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` A ) + 1 ) ) |
214 |
114 105 111 184 213
|
lemul2ad |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( B x. x ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) ) <_ ( ( B x. x ) x. ( ( log ` A ) + 1 ) ) ) |
215 |
105
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` A ) + 1 ) e. CC ) |
216 |
177 54 215
|
mulassd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( B x. x ) x. ( ( log ` A ) + 1 ) ) = ( B x. ( x x. ( ( log ` A ) + 1 ) ) ) ) |
217 |
177 54 215
|
mul12d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( B x. ( x x. ( ( log ` A ) + 1 ) ) ) = ( x x. ( B x. ( ( log ` A ) + 1 ) ) ) ) |
218 |
216 217
|
eqtrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( B x. x ) x. ( ( log ` A ) + 1 ) ) = ( x x. ( B x. ( ( log ` A ) + 1 ) ) ) ) |
219 |
214 218
|
breqtrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( B x. x ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( 1 / n ) ) <_ ( x x. ( B x. ( ( log ` A ) + 1 ) ) ) ) |
220 |
102 115 107 181 219
|
letrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) <_ ( x x. ( B x. ( ( log ` A ) + 1 ) ) ) ) |
221 |
102 107 26 110 220
|
lemul2ad |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) ) <_ ( 2 x. ( x x. ( B x. ( ( log ` A ) + 1 ) ) ) ) ) |
222 |
|
2cnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) |
223 |
222 173 62 175
|
div32d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) = ( 2 x. ( sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) / ( log ` x ) ) ) ) |
224 |
210 209
|
addcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` A ) + 1 ) e. CC ) |
225 |
177 224
|
mulcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( B x. ( ( log ` A ) + 1 ) ) e. CC ) |
226 |
54 222 225
|
mul12d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( 2 x. ( B x. ( ( log ` A ) + 1 ) ) ) ) = ( 2 x. ( x x. ( B x. ( ( log ` A ) + 1 ) ) ) ) ) |
227 |
221 223 226
|
3brtr4d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) <_ ( x x. ( 2 x. ( B x. ( ( log ` A ) + 1 ) ) ) ) ) |
228 |
101
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( B x. ( ( log ` A ) + 1 ) ) ) e. RR ) |
229 |
52 228 17
|
ledivmuld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) <_ ( 2 x. ( B x. ( ( log ` A ) + 1 ) ) ) <-> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) <_ ( x x. ( 2 x. ( B x. ( ( log ` A ) + 1 ) ) ) ) ) ) |
230 |
227 229
|
mpbird |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) <_ ( 2 x. ( B x. ( ( log ` A ) + 1 ) ) ) ) |
231 |
230
|
adantrr |
|- ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) <_ ( 2 x. ( B x. ( ( log ` A ) + 1 ) ) ) ) |
232 |
94 91 95 101 231
|
ello1d |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) ) e. <_O(1) ) |
233 |
90 91 92 232
|
lo1add |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) + ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) / x ) ) ) e. <_O(1) ) |
234 |
89 233
|
eqeltrrd |
|- ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( abs ` ( R ` x ) ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` ( x / A ) ) ) ( ( abs ` ( R ` ( x / n ) ) ) x. ( log ` n ) ) ) ) / x ) ) e. <_O(1) ) |