Step |
Hyp |
Ref |
Expression |
1 |
|
pntsval.1 |
|- S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) |
2 |
|
pntrlog2bnd.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
3 |
|
pntrlog2bnd.t |
|- T = ( a e. RR |-> if ( a e. RR+ , ( a x. ( log ` a ) ) , 0 ) ) |
4 |
|
pntrlog2bndlem5.1 |
|- ( ph -> B e. RR+ ) |
5 |
|
pntrlog2bndlem5.2 |
|- ( ph -> A. y e. RR+ ( abs ` ( ( R ` y ) / y ) ) <_ B ) |
6 |
|
pntrlog2bndlem6.1 |
|- ( ph -> A e. RR ) |
7 |
|
pntrlog2bndlem6.2 |
|- ( ph -> 1 <_ A ) |
8 |
|
elioore |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
9 |
8
|
adantl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) |
10 |
|
1rp |
|- 1 e. RR+ |
11 |
10
|
a1i |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) |
12 |
11
|
rpred |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
13 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
14 |
13
|
adantl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) |
15 |
14
|
simpld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) |
16 |
12 9 15
|
ltled |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) |
17 |
9 11 16
|
rpgecld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) |
18 |
10
|
a1i |
|- ( ph -> 1 e. RR+ ) |
19 |
6 18 7
|
rpgecld |
|- ( ph -> A e. RR+ ) |
20 |
19
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. RR+ ) |
21 |
17 20
|
rpdivcld |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / A ) e. RR+ ) |
22 |
21
|
rprege0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( x / A ) e. RR /\ 0 <_ ( x / A ) ) ) |
23 |
|
flge0nn0 |
|- ( ( ( x / A ) e. RR /\ 0 <_ ( x / A ) ) -> ( |_ ` ( x / A ) ) e. NN0 ) |
24 |
|
nn0p1nn |
|- ( ( |_ ` ( x / A ) ) e. NN0 -> ( ( |_ ` ( x / A ) ) + 1 ) e. NN ) |
25 |
22 23 24
|
3syl |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` ( x / A ) ) + 1 ) e. NN ) |
26 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
27 |
25 26
|
eleqtrdi |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( |_ ` ( x / A ) ) + 1 ) e. ( ZZ>= ` 1 ) ) |
28 |
21
|
rpred |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / A ) e. RR ) |
29 |
17
|
rpge0d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ x ) |
30 |
7
|
adantr |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 <_ A ) |
31 |
11 20 9 29 30
|
lediv2ad |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / A ) <_ ( x / 1 ) ) |
32 |
9
|
recnd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) |
33 |
32
|
div1d |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / 1 ) = x ) |
34 |
31 33
|
breqtrd |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x / A ) <_ x ) |
35 |
|
flword2 |
|- ( ( ( x / A ) e. RR /\ x e. RR /\ ( x / A ) <_ x ) -> ( |_ ` x ) e. ( ZZ>= ` ( |_ ` ( x / A ) ) ) ) |
36 |
28 9 34 35
|
syl3anc |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( |_ ` x ) e. ( ZZ>= ` ( |_ ` ( x / A ) ) ) ) |
37 |
|
fzsplit2 |
|- ( ( ( ( |_ ` ( x / A ) ) + 1 ) e. ( ZZ>= ` 1 ) /\ ( |_ ` x ) e. ( ZZ>= ` ( |_ ` ( x / A ) ) ) ) -> ( 1 ... ( |_ ` x ) ) = ( ( 1 ... ( |_ ` ( x / A ) ) ) u. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) ) |
38 |
27 36 37
|
syl2anc |
|- ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) = ( ( 1 ... ( |_ ` ( x / A ) ) ) u. ( ( ( |_ ` ( x / A ) ) + 1 ) ... ( |_ ` x ) ) ) ) |