Step |
Hyp |
Ref |
Expression |
1 |
|
pntrval.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
2 |
|
rpssre |
|- RR+ C_ RR |
3 |
2
|
a1i |
|- ( T. -> RR+ C_ RR ) |
4 |
|
1red |
|- ( T. -> 1 e. RR ) |
5 |
1
|
pntrval |
|- ( x e. RR+ -> ( R ` x ) = ( ( psi ` x ) - x ) ) |
6 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
7 |
|
chpcl |
|- ( x e. RR -> ( psi ` x ) e. RR ) |
8 |
6 7
|
syl |
|- ( x e. RR+ -> ( psi ` x ) e. RR ) |
9 |
8 6
|
resubcld |
|- ( x e. RR+ -> ( ( psi ` x ) - x ) e. RR ) |
10 |
5 9
|
eqeltrd |
|- ( x e. RR+ -> ( R ` x ) e. RR ) |
11 |
|
rerpdivcl |
|- ( ( ( R ` x ) e. RR /\ x e. RR+ ) -> ( ( R ` x ) / x ) e. RR ) |
12 |
10 11
|
mpancom |
|- ( x e. RR+ -> ( ( R ` x ) / x ) e. RR ) |
13 |
12
|
recnd |
|- ( x e. RR+ -> ( ( R ` x ) / x ) e. CC ) |
14 |
13
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( ( R ` x ) / x ) e. CC ) |
15 |
5
|
oveq1d |
|- ( x e. RR+ -> ( ( R ` x ) / x ) = ( ( ( psi ` x ) - x ) / x ) ) |
16 |
8
|
recnd |
|- ( x e. RR+ -> ( psi ` x ) e. CC ) |
17 |
|
rpcn |
|- ( x e. RR+ -> x e. CC ) |
18 |
|
rpne0 |
|- ( x e. RR+ -> x =/= 0 ) |
19 |
16 17 17 18
|
divsubdird |
|- ( x e. RR+ -> ( ( ( psi ` x ) - x ) / x ) = ( ( ( psi ` x ) / x ) - ( x / x ) ) ) |
20 |
17 18
|
dividd |
|- ( x e. RR+ -> ( x / x ) = 1 ) |
21 |
20
|
oveq2d |
|- ( x e. RR+ -> ( ( ( psi ` x ) / x ) - ( x / x ) ) = ( ( ( psi ` x ) / x ) - 1 ) ) |
22 |
15 19 21
|
3eqtrd |
|- ( x e. RR+ -> ( ( R ` x ) / x ) = ( ( ( psi ` x ) / x ) - 1 ) ) |
23 |
22
|
mpteq2ia |
|- ( x e. RR+ |-> ( ( R ` x ) / x ) ) = ( x e. RR+ |-> ( ( ( psi ` x ) / x ) - 1 ) ) |
24 |
|
rerpdivcl |
|- ( ( ( psi ` x ) e. RR /\ x e. RR+ ) -> ( ( psi ` x ) / x ) e. RR ) |
25 |
8 24
|
mpancom |
|- ( x e. RR+ -> ( ( psi ` x ) / x ) e. RR ) |
26 |
25
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( ( psi ` x ) / x ) e. RR ) |
27 |
|
1red |
|- ( ( T. /\ x e. RR+ ) -> 1 e. RR ) |
28 |
|
chpo1ub |
|- ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) |
29 |
28
|
a1i |
|- ( T. -> ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) ) |
30 |
|
ax-1cn |
|- 1 e. CC |
31 |
|
o1const |
|- ( ( RR+ C_ RR /\ 1 e. CC ) -> ( x e. RR+ |-> 1 ) e. O(1) ) |
32 |
2 30 31
|
mp2an |
|- ( x e. RR+ |-> 1 ) e. O(1) |
33 |
32
|
a1i |
|- ( T. -> ( x e. RR+ |-> 1 ) e. O(1) ) |
34 |
26 27 29 33
|
o1sub2 |
|- ( T. -> ( x e. RR+ |-> ( ( ( psi ` x ) / x ) - 1 ) ) e. O(1) ) |
35 |
23 34
|
eqeltrid |
|- ( T. -> ( x e. RR+ |-> ( ( R ` x ) / x ) ) e. O(1) ) |
36 |
|
chpcl |
|- ( y e. RR -> ( psi ` y ) e. RR ) |
37 |
|
peano2re |
|- ( ( psi ` y ) e. RR -> ( ( psi ` y ) + 1 ) e. RR ) |
38 |
36 37
|
syl |
|- ( y e. RR -> ( ( psi ` y ) + 1 ) e. RR ) |
39 |
38
|
ad2antrl |
|- ( ( T. /\ ( y e. RR /\ 1 <_ y ) ) -> ( ( psi ` y ) + 1 ) e. RR ) |
40 |
22
|
3ad2ant1 |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( ( R ` x ) / x ) = ( ( ( psi ` x ) / x ) - 1 ) ) |
41 |
40
|
fveq2d |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( abs ` ( ( R ` x ) / x ) ) = ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) ) |
42 |
|
1re |
|- 1 e. RR |
43 |
38
|
3ad2ant2 |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( ( psi ` y ) + 1 ) e. RR ) |
44 |
|
resubcl |
|- ( ( 1 e. RR /\ ( ( psi ` y ) + 1 ) e. RR ) -> ( 1 - ( ( psi ` y ) + 1 ) ) e. RR ) |
45 |
42 43 44
|
sylancr |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( 1 - ( ( psi ` y ) + 1 ) ) e. RR ) |
46 |
|
0red |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> 0 e. RR ) |
47 |
25
|
3ad2ant1 |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( ( psi ` x ) / x ) e. RR ) |
48 |
|
chpge0 |
|- ( y e. RR -> 0 <_ ( psi ` y ) ) |
49 |
48
|
3ad2ant2 |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> 0 <_ ( psi ` y ) ) |
50 |
36
|
3ad2ant2 |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( psi ` y ) e. RR ) |
51 |
|
addge02 |
|- ( ( 1 e. RR /\ ( psi ` y ) e. RR ) -> ( 0 <_ ( psi ` y ) <-> 1 <_ ( ( psi ` y ) + 1 ) ) ) |
52 |
42 50 51
|
sylancr |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( 0 <_ ( psi ` y ) <-> 1 <_ ( ( psi ` y ) + 1 ) ) ) |
53 |
49 52
|
mpbid |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> 1 <_ ( ( psi ` y ) + 1 ) ) |
54 |
|
suble0 |
|- ( ( 1 e. RR /\ ( ( psi ` y ) + 1 ) e. RR ) -> ( ( 1 - ( ( psi ` y ) + 1 ) ) <_ 0 <-> 1 <_ ( ( psi ` y ) + 1 ) ) ) |
55 |
42 43 54
|
sylancr |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( ( 1 - ( ( psi ` y ) + 1 ) ) <_ 0 <-> 1 <_ ( ( psi ` y ) + 1 ) ) ) |
56 |
53 55
|
mpbird |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( 1 - ( ( psi ` y ) + 1 ) ) <_ 0 ) |
57 |
8
|
3ad2ant1 |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( psi ` x ) e. RR ) |
58 |
6
|
3ad2ant1 |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> x e. RR ) |
59 |
|
chpge0 |
|- ( x e. RR -> 0 <_ ( psi ` x ) ) |
60 |
58 59
|
syl |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> 0 <_ ( psi ` x ) ) |
61 |
|
rpregt0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) |
62 |
61
|
3ad2ant1 |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( x e. RR /\ 0 < x ) ) |
63 |
|
divge0 |
|- ( ( ( ( psi ` x ) e. RR /\ 0 <_ ( psi ` x ) ) /\ ( x e. RR /\ 0 < x ) ) -> 0 <_ ( ( psi ` x ) / x ) ) |
64 |
57 60 62 63
|
syl21anc |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> 0 <_ ( ( psi ` x ) / x ) ) |
65 |
45 46 47 56 64
|
letrd |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( 1 - ( ( psi ` y ) + 1 ) ) <_ ( ( psi ` x ) / x ) ) |
66 |
|
2re |
|- 2 e. RR |
67 |
|
readdcl |
|- ( ( ( psi ` y ) e. RR /\ 2 e. RR ) -> ( ( psi ` y ) + 2 ) e. RR ) |
68 |
50 66 67
|
sylancl |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( ( psi ` y ) + 2 ) e. RR ) |
69 |
|
1red |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> 1 e. RR ) |
70 |
58
|
adantr |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ x <_ 1 ) -> x e. RR ) |
71 |
|
1red |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ x <_ 1 ) -> 1 e. RR ) |
72 |
66
|
a1i |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ x <_ 1 ) -> 2 e. RR ) |
73 |
|
simpr |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ x <_ 1 ) -> x <_ 1 ) |
74 |
|
1lt2 |
|- 1 < 2 |
75 |
74
|
a1i |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ x <_ 1 ) -> 1 < 2 ) |
76 |
70 71 72 73 75
|
lelttrd |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ x <_ 1 ) -> x < 2 ) |
77 |
|
chpeq0 |
|- ( x e. RR -> ( ( psi ` x ) = 0 <-> x < 2 ) ) |
78 |
70 77
|
syl |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ x <_ 1 ) -> ( ( psi ` x ) = 0 <-> x < 2 ) ) |
79 |
76 78
|
mpbird |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ x <_ 1 ) -> ( psi ` x ) = 0 ) |
80 |
79
|
oveq1d |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ x <_ 1 ) -> ( ( psi ` x ) / x ) = ( 0 / x ) ) |
81 |
|
simp1 |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> x e. RR+ ) |
82 |
81
|
rpcnne0d |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( x e. CC /\ x =/= 0 ) ) |
83 |
|
div0 |
|- ( ( x e. CC /\ x =/= 0 ) -> ( 0 / x ) = 0 ) |
84 |
82 83
|
syl |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( 0 / x ) = 0 ) |
85 |
84 49
|
eqbrtrd |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( 0 / x ) <_ ( psi ` y ) ) |
86 |
85
|
adantr |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ x <_ 1 ) -> ( 0 / x ) <_ ( psi ` y ) ) |
87 |
80 86
|
eqbrtrd |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ x <_ 1 ) -> ( ( psi ` x ) / x ) <_ ( psi ` y ) ) |
88 |
47
|
adantr |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ 1 <_ x ) -> ( ( psi ` x ) / x ) e. RR ) |
89 |
57
|
adantr |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ 1 <_ x ) -> ( psi ` x ) e. RR ) |
90 |
50
|
adantr |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ 1 <_ x ) -> ( psi ` y ) e. RR ) |
91 |
|
0lt1 |
|- 0 < 1 |
92 |
91
|
a1i |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> 0 < 1 ) |
93 |
|
lediv2a |
|- ( ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( x e. RR /\ 0 < x ) /\ ( ( psi ` x ) e. RR /\ 0 <_ ( psi ` x ) ) ) /\ 1 <_ x ) -> ( ( psi ` x ) / x ) <_ ( ( psi ` x ) / 1 ) ) |
94 |
93
|
ex |
|- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( x e. RR /\ 0 < x ) /\ ( ( psi ` x ) e. RR /\ 0 <_ ( psi ` x ) ) ) -> ( 1 <_ x -> ( ( psi ` x ) / x ) <_ ( ( psi ` x ) / 1 ) ) ) |
95 |
69 92 62 57 60 94
|
syl212anc |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( 1 <_ x -> ( ( psi ` x ) / x ) <_ ( ( psi ` x ) / 1 ) ) ) |
96 |
95
|
imp |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ 1 <_ x ) -> ( ( psi ` x ) / x ) <_ ( ( psi ` x ) / 1 ) ) |
97 |
89
|
recnd |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ 1 <_ x ) -> ( psi ` x ) e. CC ) |
98 |
97
|
div1d |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ 1 <_ x ) -> ( ( psi ` x ) / 1 ) = ( psi ` x ) ) |
99 |
96 98
|
breqtrd |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ 1 <_ x ) -> ( ( psi ` x ) / x ) <_ ( psi ` x ) ) |
100 |
|
simp2 |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> y e. RR ) |
101 |
|
ltle |
|- ( ( x e. RR /\ y e. RR ) -> ( x < y -> x <_ y ) ) |
102 |
6 101
|
sylan |
|- ( ( x e. RR+ /\ y e. RR ) -> ( x < y -> x <_ y ) ) |
103 |
102
|
3impia |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> x <_ y ) |
104 |
|
chpwordi |
|- ( ( x e. RR /\ y e. RR /\ x <_ y ) -> ( psi ` x ) <_ ( psi ` y ) ) |
105 |
58 100 103 104
|
syl3anc |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( psi ` x ) <_ ( psi ` y ) ) |
106 |
105
|
adantr |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ 1 <_ x ) -> ( psi ` x ) <_ ( psi ` y ) ) |
107 |
88 89 90 99 106
|
letrd |
|- ( ( ( x e. RR+ /\ y e. RR /\ x < y ) /\ 1 <_ x ) -> ( ( psi ` x ) / x ) <_ ( psi ` y ) ) |
108 |
58 69 87 107
|
lecasei |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( ( psi ` x ) / x ) <_ ( psi ` y ) ) |
109 |
|
2nn0 |
|- 2 e. NN0 |
110 |
|
nn0addge1 |
|- ( ( ( psi ` y ) e. RR /\ 2 e. NN0 ) -> ( psi ` y ) <_ ( ( psi ` y ) + 2 ) ) |
111 |
50 109 110
|
sylancl |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( psi ` y ) <_ ( ( psi ` y ) + 2 ) ) |
112 |
47 50 68 108 111
|
letrd |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( ( psi ` x ) / x ) <_ ( ( psi ` y ) + 2 ) ) |
113 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
114 |
113
|
oveq2i |
|- ( ( psi ` y ) + 2 ) = ( ( psi ` y ) + ( 1 + 1 ) ) |
115 |
50
|
recnd |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( psi ` y ) e. CC ) |
116 |
30
|
a1i |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> 1 e. CC ) |
117 |
115 116 116
|
add12d |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( ( psi ` y ) + ( 1 + 1 ) ) = ( 1 + ( ( psi ` y ) + 1 ) ) ) |
118 |
114 117
|
syl5eq |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( ( psi ` y ) + 2 ) = ( 1 + ( ( psi ` y ) + 1 ) ) ) |
119 |
112 118
|
breqtrd |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( ( psi ` x ) / x ) <_ ( 1 + ( ( psi ` y ) + 1 ) ) ) |
120 |
47 69 43
|
absdifled |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) <_ ( ( psi ` y ) + 1 ) <-> ( ( 1 - ( ( psi ` y ) + 1 ) ) <_ ( ( psi ` x ) / x ) /\ ( ( psi ` x ) / x ) <_ ( 1 + ( ( psi ` y ) + 1 ) ) ) ) ) |
121 |
65 119 120
|
mpbir2and |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( abs ` ( ( ( psi ` x ) / x ) - 1 ) ) <_ ( ( psi ` y ) + 1 ) ) |
122 |
41 121
|
eqbrtrd |
|- ( ( x e. RR+ /\ y e. RR /\ x < y ) -> ( abs ` ( ( R ` x ) / x ) ) <_ ( ( psi ` y ) + 1 ) ) |
123 |
122
|
3expb |
|- ( ( x e. RR+ /\ ( y e. RR /\ x < y ) ) -> ( abs ` ( ( R ` x ) / x ) ) <_ ( ( psi ` y ) + 1 ) ) |
124 |
123
|
adantrlr |
|- ( ( x e. RR+ /\ ( ( y e. RR /\ 1 <_ y ) /\ x < y ) ) -> ( abs ` ( ( R ` x ) / x ) ) <_ ( ( psi ` y ) + 1 ) ) |
125 |
124
|
adantll |
|- ( ( ( T. /\ x e. RR+ ) /\ ( ( y e. RR /\ 1 <_ y ) /\ x < y ) ) -> ( abs ` ( ( R ` x ) / x ) ) <_ ( ( psi ` y ) + 1 ) ) |
126 |
3 4 14 35 39 125
|
o1bddrp |
|- ( T. -> E. c e. RR+ A. x e. RR+ ( abs ` ( ( R ` x ) / x ) ) <_ c ) |
127 |
126
|
mptru |
|- E. c e. RR+ A. x e. RR+ ( abs ` ( ( R ` x ) / x ) ) <_ c |