| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntrval.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
| 2 |
|
1re |
|- 1 e. RR |
| 3 |
|
elicopnf |
|- ( 1 e. RR -> ( x e. ( 1 [,) +oo ) <-> ( x e. RR /\ 1 <_ x ) ) ) |
| 4 |
2 3
|
ax-mp |
|- ( x e. ( 1 [,) +oo ) <-> ( x e. RR /\ 1 <_ x ) ) |
| 5 |
4
|
simplbi |
|- ( x e. ( 1 [,) +oo ) -> x e. RR ) |
| 6 |
|
0red |
|- ( x e. ( 1 [,) +oo ) -> 0 e. RR ) |
| 7 |
|
1red |
|- ( x e. ( 1 [,) +oo ) -> 1 e. RR ) |
| 8 |
|
0lt1 |
|- 0 < 1 |
| 9 |
8
|
a1i |
|- ( x e. ( 1 [,) +oo ) -> 0 < 1 ) |
| 10 |
4
|
simprbi |
|- ( x e. ( 1 [,) +oo ) -> 1 <_ x ) |
| 11 |
6 7 5 9 10
|
ltletrd |
|- ( x e. ( 1 [,) +oo ) -> 0 < x ) |
| 12 |
5 11
|
elrpd |
|- ( x e. ( 1 [,) +oo ) -> x e. RR+ ) |
| 13 |
12
|
ssriv |
|- ( 1 [,) +oo ) C_ RR+ |
| 14 |
13
|
a1i |
|- ( T. -> ( 1 [,) +oo ) C_ RR+ ) |
| 15 |
|
rpssre |
|- RR+ C_ RR |
| 16 |
14 15
|
sstrdi |
|- ( T. -> ( 1 [,) +oo ) C_ RR ) |
| 17 |
16
|
resmptd |
|- ( T. -> ( ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) |` ( 1 [,) +oo ) ) = ( x e. ( 1 [,) +oo ) |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) ) |
| 18 |
|
chpcl |
|- ( x e. RR -> ( psi ` x ) e. RR ) |
| 19 |
5 18
|
syl |
|- ( x e. ( 1 [,) +oo ) -> ( psi ` x ) e. RR ) |
| 20 |
|
peano2re |
|- ( ( psi ` x ) e. RR -> ( ( psi ` x ) + 1 ) e. RR ) |
| 21 |
19 20
|
syl |
|- ( x e. ( 1 [,) +oo ) -> ( ( psi ` x ) + 1 ) e. RR ) |
| 22 |
12
|
rprege0d |
|- ( x e. ( 1 [,) +oo ) -> ( x e. RR /\ 0 <_ x ) ) |
| 23 |
|
flge0nn0 |
|- ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) |
| 24 |
22 23
|
syl |
|- ( x e. ( 1 [,) +oo ) -> ( |_ ` x ) e. NN0 ) |
| 25 |
|
nn0p1nn |
|- ( ( |_ ` x ) e. NN0 -> ( ( |_ ` x ) + 1 ) e. NN ) |
| 26 |
24 25
|
syl |
|- ( x e. ( 1 [,) +oo ) -> ( ( |_ ` x ) + 1 ) e. NN ) |
| 27 |
21 26
|
nndivred |
|- ( x e. ( 1 [,) +oo ) -> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) e. RR ) |
| 28 |
27
|
recnd |
|- ( x e. ( 1 [,) +oo ) -> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) e. CC ) |
| 29 |
|
ax-1cn |
|- 1 e. CC |
| 30 |
|
subcl |
|- ( ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) e. CC /\ 1 e. CC ) -> ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) e. CC ) |
| 31 |
28 29 30
|
sylancl |
|- ( x e. ( 1 [,) +oo ) -> ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) e. CC ) |
| 32 |
|
fzfid |
|- ( x e. RR -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 33 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
| 34 |
33
|
adantl |
|- ( ( x e. RR /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 35 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
| 36 |
1
|
pntrf |
|- R : RR+ --> RR |
| 37 |
36
|
ffvelcdmi |
|- ( n e. RR+ -> ( R ` n ) e. RR ) |
| 38 |
35 37
|
syl |
|- ( n e. NN -> ( R ` n ) e. RR ) |
| 39 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
| 40 |
|
nnmulcl |
|- ( ( n e. NN /\ ( n + 1 ) e. NN ) -> ( n x. ( n + 1 ) ) e. NN ) |
| 41 |
39 40
|
mpdan |
|- ( n e. NN -> ( n x. ( n + 1 ) ) e. NN ) |
| 42 |
38 41
|
nndivred |
|- ( n e. NN -> ( ( R ` n ) / ( n x. ( n + 1 ) ) ) e. RR ) |
| 43 |
34 42
|
syl |
|- ( ( x e. RR /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( R ` n ) / ( n x. ( n + 1 ) ) ) e. RR ) |
| 44 |
32 43
|
fsumrecl |
|- ( x e. RR -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) e. RR ) |
| 45 |
44
|
recnd |
|- ( x e. RR -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) e. CC ) |
| 46 |
5 45
|
syl |
|- ( x e. ( 1 [,) +oo ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) e. CC ) |
| 47 |
|
oveq2 |
|- ( m = n -> ( 1 / m ) = ( 1 / n ) ) |
| 48 |
|
fvoveq1 |
|- ( m = n -> ( psi ` ( m - 1 ) ) = ( psi ` ( n - 1 ) ) ) |
| 49 |
|
oveq1 |
|- ( m = n -> ( m - 1 ) = ( n - 1 ) ) |
| 50 |
48 49
|
oveq12d |
|- ( m = n -> ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = ( ( psi ` ( n - 1 ) ) - ( n - 1 ) ) ) |
| 51 |
47 50
|
jca |
|- ( m = n -> ( ( 1 / m ) = ( 1 / n ) /\ ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = ( ( psi ` ( n - 1 ) ) - ( n - 1 ) ) ) ) |
| 52 |
|
oveq2 |
|- ( m = ( n + 1 ) -> ( 1 / m ) = ( 1 / ( n + 1 ) ) ) |
| 53 |
|
fvoveq1 |
|- ( m = ( n + 1 ) -> ( psi ` ( m - 1 ) ) = ( psi ` ( ( n + 1 ) - 1 ) ) ) |
| 54 |
|
oveq1 |
|- ( m = ( n + 1 ) -> ( m - 1 ) = ( ( n + 1 ) - 1 ) ) |
| 55 |
53 54
|
oveq12d |
|- ( m = ( n + 1 ) -> ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) |
| 56 |
52 55
|
jca |
|- ( m = ( n + 1 ) -> ( ( 1 / m ) = ( 1 / ( n + 1 ) ) /\ ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) ) |
| 57 |
|
oveq2 |
|- ( m = 1 -> ( 1 / m ) = ( 1 / 1 ) ) |
| 58 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 59 |
57 58
|
eqtrdi |
|- ( m = 1 -> ( 1 / m ) = 1 ) |
| 60 |
|
oveq1 |
|- ( m = 1 -> ( m - 1 ) = ( 1 - 1 ) ) |
| 61 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 62 |
60 61
|
eqtrdi |
|- ( m = 1 -> ( m - 1 ) = 0 ) |
| 63 |
62
|
fveq2d |
|- ( m = 1 -> ( psi ` ( m - 1 ) ) = ( psi ` 0 ) ) |
| 64 |
|
2pos |
|- 0 < 2 |
| 65 |
|
0re |
|- 0 e. RR |
| 66 |
|
chpeq0 |
|- ( 0 e. RR -> ( ( psi ` 0 ) = 0 <-> 0 < 2 ) ) |
| 67 |
65 66
|
ax-mp |
|- ( ( psi ` 0 ) = 0 <-> 0 < 2 ) |
| 68 |
64 67
|
mpbir |
|- ( psi ` 0 ) = 0 |
| 69 |
63 68
|
eqtrdi |
|- ( m = 1 -> ( psi ` ( m - 1 ) ) = 0 ) |
| 70 |
69 62
|
oveq12d |
|- ( m = 1 -> ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = ( 0 - 0 ) ) |
| 71 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 72 |
70 71
|
eqtrdi |
|- ( m = 1 -> ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = 0 ) |
| 73 |
59 72
|
jca |
|- ( m = 1 -> ( ( 1 / m ) = 1 /\ ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = 0 ) ) |
| 74 |
|
oveq2 |
|- ( m = ( ( |_ ` x ) + 1 ) -> ( 1 / m ) = ( 1 / ( ( |_ ` x ) + 1 ) ) ) |
| 75 |
|
fvoveq1 |
|- ( m = ( ( |_ ` x ) + 1 ) -> ( psi ` ( m - 1 ) ) = ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) |
| 76 |
|
oveq1 |
|- ( m = ( ( |_ ` x ) + 1 ) -> ( m - 1 ) = ( ( ( |_ ` x ) + 1 ) - 1 ) ) |
| 77 |
75 76
|
oveq12d |
|- ( m = ( ( |_ ` x ) + 1 ) -> ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) |
| 78 |
74 77
|
jca |
|- ( m = ( ( |_ ` x ) + 1 ) -> ( ( 1 / m ) = ( 1 / ( ( |_ ` x ) + 1 ) ) /\ ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) = ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) ) |
| 79 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 80 |
26 79
|
eleqtrdi |
|- ( x e. ( 1 [,) +oo ) -> ( ( |_ ` x ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 81 |
|
elfznn |
|- ( m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) -> m e. NN ) |
| 82 |
81
|
adantl |
|- ( ( x e. ( 1 [,) +oo ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> m e. NN ) |
| 83 |
82
|
nnrecred |
|- ( ( x e. ( 1 [,) +oo ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( 1 / m ) e. RR ) |
| 84 |
83
|
recnd |
|- ( ( x e. ( 1 [,) +oo ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( 1 / m ) e. CC ) |
| 85 |
82
|
nnred |
|- ( ( x e. ( 1 [,) +oo ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> m e. RR ) |
| 86 |
|
peano2rem |
|- ( m e. RR -> ( m - 1 ) e. RR ) |
| 87 |
85 86
|
syl |
|- ( ( x e. ( 1 [,) +oo ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( m - 1 ) e. RR ) |
| 88 |
|
chpcl |
|- ( ( m - 1 ) e. RR -> ( psi ` ( m - 1 ) ) e. RR ) |
| 89 |
87 88
|
syl |
|- ( ( x e. ( 1 [,) +oo ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( psi ` ( m - 1 ) ) e. RR ) |
| 90 |
89 87
|
resubcld |
|- ( ( x e. ( 1 [,) +oo ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) e. RR ) |
| 91 |
90
|
recnd |
|- ( ( x e. ( 1 [,) +oo ) /\ m e. ( 1 ... ( ( |_ ` x ) + 1 ) ) ) -> ( ( psi ` ( m - 1 ) ) - ( m - 1 ) ) e. CC ) |
| 92 |
51 56 73 78 80 84 91
|
fsumparts |
|- ( x e. ( 1 [,) +oo ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( 1 / n ) x. ( ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) - ( ( psi ` ( n - 1 ) ) - ( n - 1 ) ) ) ) = ( ( ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) - ( 1 x. 0 ) ) - sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( 1 / ( n + 1 ) ) - ( 1 / n ) ) x. ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) ) ) |
| 93 |
5
|
flcld |
|- ( x e. ( 1 [,) +oo ) -> ( |_ ` x ) e. ZZ ) |
| 94 |
|
fzval3 |
|- ( ( |_ ` x ) e. ZZ -> ( 1 ... ( |_ ` x ) ) = ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ) |
| 95 |
93 94
|
syl |
|- ( x e. ( 1 [,) +oo ) -> ( 1 ... ( |_ ` x ) ) = ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ) |
| 96 |
95
|
eqcomd |
|- ( x e. ( 1 [,) +oo ) -> ( 1 ..^ ( ( |_ ` x ) + 1 ) ) = ( 1 ... ( |_ ` x ) ) ) |
| 97 |
33
|
adantl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 98 |
97
|
nncnd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) |
| 99 |
|
pncan |
|- ( ( n e. CC /\ 1 e. CC ) -> ( ( n + 1 ) - 1 ) = n ) |
| 100 |
98 29 99
|
sylancl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - 1 ) = n ) |
| 101 |
97
|
nnred |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR ) |
| 102 |
100 101
|
eqeltrd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - 1 ) e. RR ) |
| 103 |
|
chpcl |
|- ( ( ( n + 1 ) - 1 ) e. RR -> ( psi ` ( ( n + 1 ) - 1 ) ) e. RR ) |
| 104 |
102 103
|
syl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( ( n + 1 ) - 1 ) ) e. RR ) |
| 105 |
104
|
recnd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( ( n + 1 ) - 1 ) ) e. CC ) |
| 106 |
102
|
recnd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - 1 ) e. CC ) |
| 107 |
|
peano2rem |
|- ( n e. RR -> ( n - 1 ) e. RR ) |
| 108 |
101 107
|
syl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n - 1 ) e. RR ) |
| 109 |
|
chpcl |
|- ( ( n - 1 ) e. RR -> ( psi ` ( n - 1 ) ) e. RR ) |
| 110 |
108 109
|
syl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( n - 1 ) ) e. RR ) |
| 111 |
110
|
recnd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( n - 1 ) ) e. CC ) |
| 112 |
|
1cnd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) |
| 113 |
98 112
|
subcld |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n - 1 ) e. CC ) |
| 114 |
105 106 111 113
|
sub4d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) - ( ( psi ` ( n - 1 ) ) - ( n - 1 ) ) ) = ( ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( psi ` ( n - 1 ) ) ) - ( ( ( n + 1 ) - 1 ) - ( n - 1 ) ) ) ) |
| 115 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
| 116 |
97 115
|
syl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
| 117 |
116
|
recnd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) |
| 118 |
|
nnm1nn0 |
|- ( n e. NN -> ( n - 1 ) e. NN0 ) |
| 119 |
97 118
|
syl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n - 1 ) e. NN0 ) |
| 120 |
|
chpp1 |
|- ( ( n - 1 ) e. NN0 -> ( psi ` ( ( n - 1 ) + 1 ) ) = ( ( psi ` ( n - 1 ) ) + ( Lam ` ( ( n - 1 ) + 1 ) ) ) ) |
| 121 |
119 120
|
syl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( ( n - 1 ) + 1 ) ) = ( ( psi ` ( n - 1 ) ) + ( Lam ` ( ( n - 1 ) + 1 ) ) ) ) |
| 122 |
|
npcan |
|- ( ( n e. CC /\ 1 e. CC ) -> ( ( n - 1 ) + 1 ) = n ) |
| 123 |
98 29 122
|
sylancl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n - 1 ) + 1 ) = n ) |
| 124 |
123 100
|
eqtr4d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n - 1 ) + 1 ) = ( ( n + 1 ) - 1 ) ) |
| 125 |
124
|
fveq2d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( ( n - 1 ) + 1 ) ) = ( psi ` ( ( n + 1 ) - 1 ) ) ) |
| 126 |
123
|
fveq2d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` ( ( n - 1 ) + 1 ) ) = ( Lam ` n ) ) |
| 127 |
126
|
oveq2d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( n - 1 ) ) + ( Lam ` ( ( n - 1 ) + 1 ) ) ) = ( ( psi ` ( n - 1 ) ) + ( Lam ` n ) ) ) |
| 128 |
121 125 127
|
3eqtr3d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( ( n + 1 ) - 1 ) ) = ( ( psi ` ( n - 1 ) ) + ( Lam ` n ) ) ) |
| 129 |
111 117 128
|
mvrladdd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( psi ` ( n - 1 ) ) ) = ( Lam ` n ) ) |
| 130 |
|
peano2cn |
|- ( n e. CC -> ( n + 1 ) e. CC ) |
| 131 |
98 130
|
syl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n + 1 ) e. CC ) |
| 132 |
131 98 112
|
nnncan2d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( n + 1 ) - 1 ) - ( n - 1 ) ) = ( ( n + 1 ) - n ) ) |
| 133 |
|
pncan2 |
|- ( ( n e. CC /\ 1 e. CC ) -> ( ( n + 1 ) - n ) = 1 ) |
| 134 |
98 29 133
|
sylancl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - n ) = 1 ) |
| 135 |
132 134
|
eqtrd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( n + 1 ) - 1 ) - ( n - 1 ) ) = 1 ) |
| 136 |
129 135
|
oveq12d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( psi ` ( n - 1 ) ) ) - ( ( ( n + 1 ) - 1 ) - ( n - 1 ) ) ) = ( ( Lam ` n ) - 1 ) ) |
| 137 |
114 136
|
eqtrd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) - ( ( psi ` ( n - 1 ) ) - ( n - 1 ) ) ) = ( ( Lam ` n ) - 1 ) ) |
| 138 |
137
|
oveq2d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 / n ) x. ( ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) - ( ( psi ` ( n - 1 ) ) - ( n - 1 ) ) ) ) = ( ( 1 / n ) x. ( ( Lam ` n ) - 1 ) ) ) |
| 139 |
|
peano2rem |
|- ( ( Lam ` n ) e. RR -> ( ( Lam ` n ) - 1 ) e. RR ) |
| 140 |
116 139
|
syl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) - 1 ) e. RR ) |
| 141 |
140
|
recnd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) - 1 ) e. CC ) |
| 142 |
97
|
nnne0d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) |
| 143 |
141 98 142
|
divrec2d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) - 1 ) / n ) = ( ( 1 / n ) x. ( ( Lam ` n ) - 1 ) ) ) |
| 144 |
138 143
|
eqtr4d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 / n ) x. ( ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) - ( ( psi ` ( n - 1 ) ) - ( n - 1 ) ) ) ) = ( ( ( Lam ` n ) - 1 ) / n ) ) |
| 145 |
96 144
|
sumeq12rdv |
|- ( x e. ( 1 [,) +oo ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( 1 / n ) x. ( ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) - ( ( psi ` ( n - 1 ) ) - ( n - 1 ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) ) |
| 146 |
24
|
nn0cnd |
|- ( x e. ( 1 [,) +oo ) -> ( |_ ` x ) e. CC ) |
| 147 |
|
pncan |
|- ( ( ( |_ ` x ) e. CC /\ 1 e. CC ) -> ( ( ( |_ ` x ) + 1 ) - 1 ) = ( |_ ` x ) ) |
| 148 |
146 29 147
|
sylancl |
|- ( x e. ( 1 [,) +oo ) -> ( ( ( |_ ` x ) + 1 ) - 1 ) = ( |_ ` x ) ) |
| 149 |
148
|
fveq2d |
|- ( x e. ( 1 [,) +oo ) -> ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( psi ` ( |_ ` x ) ) ) |
| 150 |
|
chpfl |
|- ( x e. RR -> ( psi ` ( |_ ` x ) ) = ( psi ` x ) ) |
| 151 |
5 150
|
syl |
|- ( x e. ( 1 [,) +oo ) -> ( psi ` ( |_ ` x ) ) = ( psi ` x ) ) |
| 152 |
149 151
|
eqtrd |
|- ( x e. ( 1 [,) +oo ) -> ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( psi ` x ) ) |
| 153 |
152
|
oveq1d |
|- ( x e. ( 1 [,) +oo ) -> ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( ( psi ` x ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) |
| 154 |
19
|
recnd |
|- ( x e. ( 1 [,) +oo ) -> ( psi ` x ) e. CC ) |
| 155 |
26
|
nncnd |
|- ( x e. ( 1 [,) +oo ) -> ( ( |_ ` x ) + 1 ) e. CC ) |
| 156 |
|
1cnd |
|- ( x e. ( 1 [,) +oo ) -> 1 e. CC ) |
| 157 |
154 155 156
|
subsub3d |
|- ( x e. ( 1 [,) +oo ) -> ( ( psi ` x ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( ( ( psi ` x ) + 1 ) - ( ( |_ ` x ) + 1 ) ) ) |
| 158 |
153 157
|
eqtrd |
|- ( x e. ( 1 [,) +oo ) -> ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) = ( ( ( psi ` x ) + 1 ) - ( ( |_ ` x ) + 1 ) ) ) |
| 159 |
158
|
oveq2d |
|- ( x e. ( 1 [,) +oo ) -> ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) = ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( ( psi ` x ) + 1 ) - ( ( |_ ` x ) + 1 ) ) ) ) |
| 160 |
26
|
nnrecred |
|- ( x e. ( 1 [,) +oo ) -> ( 1 / ( ( |_ ` x ) + 1 ) ) e. RR ) |
| 161 |
160
|
recnd |
|- ( x e. ( 1 [,) +oo ) -> ( 1 / ( ( |_ ` x ) + 1 ) ) e. CC ) |
| 162 |
|
peano2cn |
|- ( ( psi ` x ) e. CC -> ( ( psi ` x ) + 1 ) e. CC ) |
| 163 |
154 162
|
syl |
|- ( x e. ( 1 [,) +oo ) -> ( ( psi ` x ) + 1 ) e. CC ) |
| 164 |
161 163 155
|
subdid |
|- ( x e. ( 1 [,) +oo ) -> ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( ( psi ` x ) + 1 ) - ( ( |_ ` x ) + 1 ) ) ) = ( ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` x ) + 1 ) ) - ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( |_ ` x ) + 1 ) ) ) ) |
| 165 |
26
|
nnne0d |
|- ( x e. ( 1 [,) +oo ) -> ( ( |_ ` x ) + 1 ) =/= 0 ) |
| 166 |
163 155 165
|
divrec2d |
|- ( x e. ( 1 [,) +oo ) -> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) = ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` x ) + 1 ) ) ) |
| 167 |
166
|
eqcomd |
|- ( x e. ( 1 [,) +oo ) -> ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` x ) + 1 ) ) = ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) ) |
| 168 |
155 165
|
recid2d |
|- ( x e. ( 1 [,) +oo ) -> ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( |_ ` x ) + 1 ) ) = 1 ) |
| 169 |
167 168
|
oveq12d |
|- ( x e. ( 1 [,) +oo ) -> ( ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` x ) + 1 ) ) - ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( |_ ` x ) + 1 ) ) ) = ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) |
| 170 |
159 164 169
|
3eqtrd |
|- ( x e. ( 1 [,) +oo ) -> ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) = ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) |
| 171 |
29
|
mul01i |
|- ( 1 x. 0 ) = 0 |
| 172 |
171
|
a1i |
|- ( x e. ( 1 [,) +oo ) -> ( 1 x. 0 ) = 0 ) |
| 173 |
170 172
|
oveq12d |
|- ( x e. ( 1 [,) +oo ) -> ( ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) - ( 1 x. 0 ) ) = ( ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) - 0 ) ) |
| 174 |
31
|
subid1d |
|- ( x e. ( 1 [,) +oo ) -> ( ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) - 0 ) = ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) |
| 175 |
173 174
|
eqtrd |
|- ( x e. ( 1 [,) +oo ) -> ( ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) - ( 1 x. 0 ) ) = ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) |
| 176 |
97 41
|
syl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( n + 1 ) ) e. NN ) |
| 177 |
176
|
nnrecred |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( n x. ( n + 1 ) ) ) e. RR ) |
| 178 |
177
|
recnd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( n x. ( n + 1 ) ) ) e. CC ) |
| 179 |
97 38
|
syl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` n ) e. RR ) |
| 180 |
179
|
recnd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` n ) e. CC ) |
| 181 |
178 180
|
mulneg1d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( -u ( 1 / ( n x. ( n + 1 ) ) ) x. ( R ` n ) ) = -u ( ( 1 / ( n x. ( n + 1 ) ) ) x. ( R ` n ) ) ) |
| 182 |
98 112
|
mulcld |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. 1 ) e. CC ) |
| 183 |
98 131
|
mulcld |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( n + 1 ) ) e. CC ) |
| 184 |
176
|
nnne0d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. ( n + 1 ) ) =/= 0 ) |
| 185 |
131 182 183 184
|
divsubdird |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( n + 1 ) - ( n x. 1 ) ) / ( n x. ( n + 1 ) ) ) = ( ( ( n + 1 ) / ( n x. ( n + 1 ) ) ) - ( ( n x. 1 ) / ( n x. ( n + 1 ) ) ) ) ) |
| 186 |
98
|
mulridd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n x. 1 ) = n ) |
| 187 |
186
|
oveq2d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - ( n x. 1 ) ) = ( ( n + 1 ) - n ) ) |
| 188 |
187 134
|
eqtrd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - ( n x. 1 ) ) = 1 ) |
| 189 |
188
|
oveq1d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( n + 1 ) - ( n x. 1 ) ) / ( n x. ( n + 1 ) ) ) = ( 1 / ( n x. ( n + 1 ) ) ) ) |
| 190 |
131
|
mulridd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) x. 1 ) = ( n + 1 ) ) |
| 191 |
131 98
|
mulcomd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) x. n ) = ( n x. ( n + 1 ) ) ) |
| 192 |
190 191
|
oveq12d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( n + 1 ) x. 1 ) / ( ( n + 1 ) x. n ) ) = ( ( n + 1 ) / ( n x. ( n + 1 ) ) ) ) |
| 193 |
97 39
|
syl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n + 1 ) e. NN ) |
| 194 |
193
|
nnne0d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n + 1 ) =/= 0 ) |
| 195 |
112 98 131 142 194
|
divcan5d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( n + 1 ) x. 1 ) / ( ( n + 1 ) x. n ) ) = ( 1 / n ) ) |
| 196 |
192 195
|
eqtr3d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) / ( n x. ( n + 1 ) ) ) = ( 1 / n ) ) |
| 197 |
112 131 98 194 142
|
divcan5d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n x. 1 ) / ( n x. ( n + 1 ) ) ) = ( 1 / ( n + 1 ) ) ) |
| 198 |
196 197
|
oveq12d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( n + 1 ) / ( n x. ( n + 1 ) ) ) - ( ( n x. 1 ) / ( n x. ( n + 1 ) ) ) ) = ( ( 1 / n ) - ( 1 / ( n + 1 ) ) ) ) |
| 199 |
185 189 198
|
3eqtr3d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( n x. ( n + 1 ) ) ) = ( ( 1 / n ) - ( 1 / ( n + 1 ) ) ) ) |
| 200 |
199
|
negeqd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> -u ( 1 / ( n x. ( n + 1 ) ) ) = -u ( ( 1 / n ) - ( 1 / ( n + 1 ) ) ) ) |
| 201 |
97
|
nnrecred |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. RR ) |
| 202 |
201
|
recnd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. CC ) |
| 203 |
193
|
nnrecred |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( n + 1 ) ) e. RR ) |
| 204 |
203
|
recnd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( n + 1 ) ) e. CC ) |
| 205 |
202 204
|
negsubdi2d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> -u ( ( 1 / n ) - ( 1 / ( n + 1 ) ) ) = ( ( 1 / ( n + 1 ) ) - ( 1 / n ) ) ) |
| 206 |
200 205
|
eqtr2d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 / ( n + 1 ) ) - ( 1 / n ) ) = -u ( 1 / ( n x. ( n + 1 ) ) ) ) |
| 207 |
97
|
nnrpd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
| 208 |
100 207
|
eqeltrd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n + 1 ) - 1 ) e. RR+ ) |
| 209 |
1
|
pntrval |
|- ( ( ( n + 1 ) - 1 ) e. RR+ -> ( R ` ( ( n + 1 ) - 1 ) ) = ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) |
| 210 |
208 209
|
syl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( ( n + 1 ) - 1 ) ) = ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) |
| 211 |
100
|
fveq2d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( ( n + 1 ) - 1 ) ) = ( R ` n ) ) |
| 212 |
210 211
|
eqtr3d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) = ( R ` n ) ) |
| 213 |
206 212
|
oveq12d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( 1 / ( n + 1 ) ) - ( 1 / n ) ) x. ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) = ( -u ( 1 / ( n x. ( n + 1 ) ) ) x. ( R ` n ) ) ) |
| 214 |
180 183 184
|
divrec2d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( R ` n ) / ( n x. ( n + 1 ) ) ) = ( ( 1 / ( n x. ( n + 1 ) ) ) x. ( R ` n ) ) ) |
| 215 |
214
|
negeqd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> -u ( ( R ` n ) / ( n x. ( n + 1 ) ) ) = -u ( ( 1 / ( n x. ( n + 1 ) ) ) x. ( R ` n ) ) ) |
| 216 |
181 213 215
|
3eqtr4d |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( 1 / ( n + 1 ) ) - ( 1 / n ) ) x. ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) = -u ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) |
| 217 |
96 216
|
sumeq12rdv |
|- ( x e. ( 1 [,) +oo ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( 1 / ( n + 1 ) ) - ( 1 / n ) ) x. ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) -u ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) |
| 218 |
|
fzfid |
|- ( x e. ( 1 [,) +oo ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 219 |
97 42
|
syl |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( R ` n ) / ( n x. ( n + 1 ) ) ) e. RR ) |
| 220 |
219
|
recnd |
|- ( ( x e. ( 1 [,) +oo ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( R ` n ) / ( n x. ( n + 1 ) ) ) e. CC ) |
| 221 |
218 220
|
fsumneg |
|- ( x e. ( 1 [,) +oo ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) -u ( ( R ` n ) / ( n x. ( n + 1 ) ) ) = -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) |
| 222 |
217 221
|
eqtrd |
|- ( x e. ( 1 [,) +oo ) -> sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( 1 / ( n + 1 ) ) - ( 1 / n ) ) x. ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) = -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) |
| 223 |
175 222
|
oveq12d |
|- ( x e. ( 1 [,) +oo ) -> ( ( ( ( 1 / ( ( |_ ` x ) + 1 ) ) x. ( ( psi ` ( ( ( |_ ` x ) + 1 ) - 1 ) ) - ( ( ( |_ ` x ) + 1 ) - 1 ) ) ) - ( 1 x. 0 ) ) - sum_ n e. ( 1 ..^ ( ( |_ ` x ) + 1 ) ) ( ( ( 1 / ( n + 1 ) ) - ( 1 / n ) ) x. ( ( psi ` ( ( n + 1 ) - 1 ) ) - ( ( n + 1 ) - 1 ) ) ) ) = ( ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) - -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) ) |
| 224 |
92 145 223
|
3eqtr3d |
|- ( x e. ( 1 [,) +oo ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) = ( ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) - -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) ) |
| 225 |
31 46
|
subnegd |
|- ( x e. ( 1 [,) +oo ) -> ( ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) - -u sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) = ( ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) ) |
| 226 |
224 225
|
eqtrd |
|- ( x e. ( 1 [,) +oo ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) = ( ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) ) |
| 227 |
31 46 226
|
mvrladdd |
|- ( x e. ( 1 [,) +oo ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) - ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) |
| 228 |
227
|
mpteq2ia |
|- ( x e. ( 1 [,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) - ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) ) = ( x e. ( 1 [,) +oo ) |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) |
| 229 |
|
fzfid |
|- ( ( T. /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 230 |
33
|
adantl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 231 |
230 115
|
syl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
| 232 |
231 139
|
syl |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) - 1 ) e. RR ) |
| 233 |
232 230
|
nndivred |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) - 1 ) / n ) e. RR ) |
| 234 |
229 233
|
fsumrecl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) e. RR ) |
| 235 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 236 |
235
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> x e. RR ) |
| 237 |
236 18
|
syl |
|- ( ( T. /\ x e. RR+ ) -> ( psi ` x ) e. RR ) |
| 238 |
237 20
|
syl |
|- ( ( T. /\ x e. RR+ ) -> ( ( psi ` x ) + 1 ) e. RR ) |
| 239 |
|
rprege0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) |
| 240 |
239 23
|
syl |
|- ( x e. RR+ -> ( |_ ` x ) e. NN0 ) |
| 241 |
240
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( |_ ` x ) e. NN0 ) |
| 242 |
241 25
|
syl |
|- ( ( T. /\ x e. RR+ ) -> ( ( |_ ` x ) + 1 ) e. NN ) |
| 243 |
238 242
|
nndivred |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) e. RR ) |
| 244 |
|
peano2rem |
|- ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) e. RR -> ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) e. RR ) |
| 245 |
243 244
|
syl |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) e. RR ) |
| 246 |
|
reex |
|- RR e. _V |
| 247 |
246 15
|
ssexi |
|- RR+ e. _V |
| 248 |
247
|
a1i |
|- ( T. -> RR+ e. _V ) |
| 249 |
231 230
|
nndivred |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) |
| 250 |
249
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) |
| 251 |
229 250
|
fsumcl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. CC ) |
| 252 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
| 253 |
252
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
| 254 |
253
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
| 255 |
251 254
|
subcld |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) e. CC ) |
| 256 |
230
|
nnrecred |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. RR ) |
| 257 |
229 256
|
fsumrecl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) e. RR ) |
| 258 |
257 253
|
resubcld |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) e. RR ) |
| 259 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) ) |
| 260 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) ) |
| 261 |
248 255 258 259 260
|
offval2 |
|- ( T. -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) oF - ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) ) ) |
| 262 |
256
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. CC ) |
| 263 |
229 250 262
|
fsumsub |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) - ( 1 / n ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) ) ) |
| 264 |
231
|
recnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) |
| 265 |
|
1cnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) |
| 266 |
230
|
nncnd |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) |
| 267 |
230
|
nnne0d |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) |
| 268 |
264 265 266 267
|
divsubdird |
|- ( ( ( T. /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) - 1 ) / n ) = ( ( ( Lam ` n ) / n ) - ( 1 / n ) ) ) |
| 269 |
268
|
sumeq2dv |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) - ( 1 / n ) ) ) |
| 270 |
257
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) e. CC ) |
| 271 |
251 270 254
|
nnncan2d |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) ) ) |
| 272 |
263 269 271
|
3eqtr4rd |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) ) |
| 273 |
272
|
mpteq2dva |
|- ( T. -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) ) ) |
| 274 |
261 273
|
eqtrd |
|- ( T. -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) oF - ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) ) ) |
| 275 |
|
vmadivsum |
|- ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) |
| 276 |
15
|
a1i |
|- ( T. -> RR+ C_ RR ) |
| 277 |
258
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) e. CC ) |
| 278 |
|
1red |
|- ( T. -> 1 e. RR ) |
| 279 |
|
harmoniclbnd |
|- ( x e. RR+ -> ( log ` x ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) ) |
| 280 |
279
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( log ` x ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) ) |
| 281 |
253 257 280
|
abssubge0d |
|- ( ( T. /\ x e. RR+ ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) |
| 282 |
281
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) |
| 283 |
235
|
ad2antrl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR ) |
| 284 |
|
simprr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 <_ x ) |
| 285 |
|
harmonicubnd |
|- ( ( x e. RR /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) |
| 286 |
283 284 285
|
syl2anc |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) |
| 287 |
|
1red |
|- ( ( T. /\ x e. RR+ ) -> 1 e. RR ) |
| 288 |
257 253 287
|
lesubadd2d |
|- ( ( T. /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) <_ 1 <-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) ) |
| 289 |
288
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) <_ 1 <-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) <_ ( ( log ` x ) + 1 ) ) ) |
| 290 |
286 289
|
mpbird |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) <_ 1 ) |
| 291 |
282 290
|
eqbrtrd |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) <_ 1 ) |
| 292 |
276 277 278 278 291
|
elo1d |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) e. O(1) ) |
| 293 |
|
o1sub |
|- ( ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) /\ ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) e. O(1) ) -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) oF - ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) ) e. O(1) ) |
| 294 |
275 292 293
|
sylancr |
|- ( T. -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) oF - ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / n ) - ( log ` x ) ) ) ) e. O(1) ) |
| 295 |
274 294
|
eqeltrrd |
|- ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) ) e. O(1) ) |
| 296 |
243
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) e. CC ) |
| 297 |
|
1cnd |
|- ( ( T. /\ x e. RR+ ) -> 1 e. CC ) |
| 298 |
237
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( psi ` x ) e. CC ) |
| 299 |
|
rpcnne0 |
|- ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) |
| 300 |
299
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( x e. CC /\ x =/= 0 ) ) |
| 301 |
|
divdir |
|- ( ( ( psi ` x ) e. CC /\ 1 e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( psi ` x ) + 1 ) / x ) = ( ( ( psi ` x ) / x ) + ( 1 / x ) ) ) |
| 302 |
298 297 300 301
|
syl3anc |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) / x ) = ( ( ( psi ` x ) / x ) + ( 1 / x ) ) ) |
| 303 |
302
|
mpteq2dva |
|- ( T. -> ( x e. RR+ |-> ( ( ( psi ` x ) + 1 ) / x ) ) = ( x e. RR+ |-> ( ( ( psi ` x ) / x ) + ( 1 / x ) ) ) ) |
| 304 |
|
simpr |
|- ( ( T. /\ x e. RR+ ) -> x e. RR+ ) |
| 305 |
237 304
|
rerpdivcld |
|- ( ( T. /\ x e. RR+ ) -> ( ( psi ` x ) / x ) e. RR ) |
| 306 |
|
rpreccl |
|- ( x e. RR+ -> ( 1 / x ) e. RR+ ) |
| 307 |
306
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) |
| 308 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> ( ( psi ` x ) / x ) ) = ( x e. RR+ |-> ( ( psi ` x ) / x ) ) ) |
| 309 |
|
eqidd |
|- ( T. -> ( x e. RR+ |-> ( 1 / x ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
| 310 |
248 305 307 308 309
|
offval2 |
|- ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) oF + ( x e. RR+ |-> ( 1 / x ) ) ) = ( x e. RR+ |-> ( ( ( psi ` x ) / x ) + ( 1 / x ) ) ) ) |
| 311 |
|
chpo1ub |
|- ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) |
| 312 |
|
divrcnv |
|- ( 1 e. CC -> ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 ) |
| 313 |
29 312
|
ax-mp |
|- ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 |
| 314 |
|
rlimo1 |
|- ( ( x e. RR+ |-> ( 1 / x ) ) ~~>r 0 -> ( x e. RR+ |-> ( 1 / x ) ) e. O(1) ) |
| 315 |
313 314
|
mp1i |
|- ( T. -> ( x e. RR+ |-> ( 1 / x ) ) e. O(1) ) |
| 316 |
|
o1add |
|- ( ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) /\ ( x e. RR+ |-> ( 1 / x ) ) e. O(1) ) -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) oF + ( x e. RR+ |-> ( 1 / x ) ) ) e. O(1) ) |
| 317 |
311 315 316
|
sylancr |
|- ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) oF + ( x e. RR+ |-> ( 1 / x ) ) ) e. O(1) ) |
| 318 |
310 317
|
eqeltrrd |
|- ( T. -> ( x e. RR+ |-> ( ( ( psi ` x ) / x ) + ( 1 / x ) ) ) e. O(1) ) |
| 319 |
303 318
|
eqeltrd |
|- ( T. -> ( x e. RR+ |-> ( ( ( psi ` x ) + 1 ) / x ) ) e. O(1) ) |
| 320 |
238 304
|
rerpdivcld |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) / x ) e. RR ) |
| 321 |
|
chpge0 |
|- ( x e. RR -> 0 <_ ( psi ` x ) ) |
| 322 |
236 321
|
syl |
|- ( ( T. /\ x e. RR+ ) -> 0 <_ ( psi ` x ) ) |
| 323 |
237 322
|
ge0p1rpd |
|- ( ( T. /\ x e. RR+ ) -> ( ( psi ` x ) + 1 ) e. RR+ ) |
| 324 |
323
|
rprege0d |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) e. RR /\ 0 <_ ( ( psi ` x ) + 1 ) ) ) |
| 325 |
242
|
nnrpd |
|- ( ( T. /\ x e. RR+ ) -> ( ( |_ ` x ) + 1 ) e. RR+ ) |
| 326 |
325
|
rpregt0d |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( |_ ` x ) + 1 ) e. RR /\ 0 < ( ( |_ ` x ) + 1 ) ) ) |
| 327 |
|
divge0 |
|- ( ( ( ( ( psi ` x ) + 1 ) e. RR /\ 0 <_ ( ( psi ` x ) + 1 ) ) /\ ( ( ( |_ ` x ) + 1 ) e. RR /\ 0 < ( ( |_ ` x ) + 1 ) ) ) -> 0 <_ ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) ) |
| 328 |
324 326 327
|
syl2anc |
|- ( ( T. /\ x e. RR+ ) -> 0 <_ ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) ) |
| 329 |
243 328
|
absidd |
|- ( ( T. /\ x e. RR+ ) -> ( abs ` ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) ) = ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) ) |
| 330 |
320
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) / x ) e. CC ) |
| 331 |
330
|
abscld |
|- ( ( T. /\ x e. RR+ ) -> ( abs ` ( ( ( psi ` x ) + 1 ) / x ) ) e. RR ) |
| 332 |
|
fllep1 |
|- ( x e. RR -> x <_ ( ( |_ ` x ) + 1 ) ) |
| 333 |
236 332
|
syl |
|- ( ( T. /\ x e. RR+ ) -> x <_ ( ( |_ ` x ) + 1 ) ) |
| 334 |
|
rpregt0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) |
| 335 |
334
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( x e. RR /\ 0 < x ) ) |
| 336 |
323
|
rpregt0d |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) e. RR /\ 0 < ( ( psi ` x ) + 1 ) ) ) |
| 337 |
|
lediv2 |
|- ( ( ( x e. RR /\ 0 < x ) /\ ( ( ( |_ ` x ) + 1 ) e. RR /\ 0 < ( ( |_ ` x ) + 1 ) ) /\ ( ( ( psi ` x ) + 1 ) e. RR /\ 0 < ( ( psi ` x ) + 1 ) ) ) -> ( x <_ ( ( |_ ` x ) + 1 ) <-> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) <_ ( ( ( psi ` x ) + 1 ) / x ) ) ) |
| 338 |
335 326 336 337
|
syl3anc |
|- ( ( T. /\ x e. RR+ ) -> ( x <_ ( ( |_ ` x ) + 1 ) <-> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) <_ ( ( ( psi ` x ) + 1 ) / x ) ) ) |
| 339 |
333 338
|
mpbid |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) <_ ( ( ( psi ` x ) + 1 ) / x ) ) |
| 340 |
320
|
leabsd |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) / x ) <_ ( abs ` ( ( ( psi ` x ) + 1 ) / x ) ) ) |
| 341 |
243 320 331 339 340
|
letrd |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) <_ ( abs ` ( ( ( psi ` x ) + 1 ) / x ) ) ) |
| 342 |
329 341
|
eqbrtrd |
|- ( ( T. /\ x e. RR+ ) -> ( abs ` ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) ) <_ ( abs ` ( ( ( psi ` x ) + 1 ) / x ) ) ) |
| 343 |
342
|
adantrr |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) ) <_ ( abs ` ( ( ( psi ` x ) + 1 ) / x ) ) ) |
| 344 |
278 319 320 296 343
|
o1le |
|- ( T. -> ( x e. RR+ |-> ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) ) e. O(1) ) |
| 345 |
|
o1const |
|- ( ( RR+ C_ RR /\ 1 e. CC ) -> ( x e. RR+ |-> 1 ) e. O(1) ) |
| 346 |
15 29 345
|
mp2an |
|- ( x e. RR+ |-> 1 ) e. O(1) |
| 347 |
346
|
a1i |
|- ( T. -> ( x e. RR+ |-> 1 ) e. O(1) ) |
| 348 |
296 297 344 347
|
o1sub2 |
|- ( T. -> ( x e. RR+ |-> ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) e. O(1) ) |
| 349 |
234 245 295 348
|
o1sub2 |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) - ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) ) e. O(1) ) |
| 350 |
14 349
|
o1res2 |
|- ( T. -> ( x e. ( 1 [,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) - 1 ) / n ) - ( ( ( ( psi ` x ) + 1 ) / ( ( |_ ` x ) + 1 ) ) - 1 ) ) ) e. O(1) ) |
| 351 |
228 350
|
eqeltrrid |
|- ( T. -> ( x e. ( 1 [,) +oo ) |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) e. O(1) ) |
| 352 |
17 351
|
eqeltrd |
|- ( T. -> ( ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) |` ( 1 [,) +oo ) ) e. O(1) ) |
| 353 |
|
eqid |
|- ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) = ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) |
| 354 |
353 45
|
fmpti |
|- ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) : RR --> CC |
| 355 |
354
|
a1i |
|- ( T. -> ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) : RR --> CC ) |
| 356 |
|
ssidd |
|- ( T. -> RR C_ RR ) |
| 357 |
355 356 278
|
o1resb |
|- ( T. -> ( ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) e. O(1) <-> ( ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) |` ( 1 [,) +oo ) ) e. O(1) ) ) |
| 358 |
352 357
|
mpbird |
|- ( T. -> ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) e. O(1) ) |
| 359 |
358
|
mptru |
|- ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( R ` n ) / ( n x. ( n + 1 ) ) ) ) e. O(1) |