Step |
Hyp |
Ref |
Expression |
1 |
|
pntsval.1 |
|- S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) |
2 |
|
fzfid |
|- ( a e. RR -> ( 1 ... ( |_ ` a ) ) e. Fin ) |
3 |
|
elfznn |
|- ( i e. ( 1 ... ( |_ ` a ) ) -> i e. NN ) |
4 |
3
|
adantl |
|- ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> i e. NN ) |
5 |
|
vmacl |
|- ( i e. NN -> ( Lam ` i ) e. RR ) |
6 |
4 5
|
syl |
|- ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> ( Lam ` i ) e. RR ) |
7 |
4
|
nnrpd |
|- ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> i e. RR+ ) |
8 |
7
|
relogcld |
|- ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> ( log ` i ) e. RR ) |
9 |
|
simpl |
|- ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> a e. RR ) |
10 |
9 4
|
nndivred |
|- ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> ( a / i ) e. RR ) |
11 |
|
chpcl |
|- ( ( a / i ) e. RR -> ( psi ` ( a / i ) ) e. RR ) |
12 |
10 11
|
syl |
|- ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> ( psi ` ( a / i ) ) e. RR ) |
13 |
8 12
|
readdcld |
|- ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> ( ( log ` i ) + ( psi ` ( a / i ) ) ) e. RR ) |
14 |
6 13
|
remulcld |
|- ( ( a e. RR /\ i e. ( 1 ... ( |_ ` a ) ) ) -> ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) e. RR ) |
15 |
2 14
|
fsumrecl |
|- ( a e. RR -> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) e. RR ) |
16 |
1 15
|
fmpti |
|- S : RR --> RR |