| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntsval.1 |
|- S = ( a e. RR |-> sum_ i e. ( 1 ... ( |_ ` a ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( a / i ) ) ) ) ) |
| 2 |
1
|
pntsval |
|- ( A e. RR -> ( S ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) ) |
| 3 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN ) |
| 4 |
3
|
adantl |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN ) |
| 5 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
| 6 |
4 5
|
syl |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` n ) e. RR ) |
| 7 |
6
|
recnd |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` n ) e. CC ) |
| 8 |
4
|
nnrpd |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. RR+ ) |
| 9 |
8
|
relogcld |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` n ) e. RR ) |
| 10 |
9
|
recnd |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` n ) e. CC ) |
| 11 |
|
simpl |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> A e. RR ) |
| 12 |
11 4
|
nndivred |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( A / n ) e. RR ) |
| 13 |
|
chpcl |
|- ( ( A / n ) e. RR -> ( psi ` ( A / n ) ) e. RR ) |
| 14 |
12 13
|
syl |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( psi ` ( A / n ) ) e. RR ) |
| 15 |
14
|
recnd |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( psi ` ( A / n ) ) e. CC ) |
| 16 |
7 10 15
|
adddid |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) = ( ( ( Lam ` n ) x. ( log ` n ) ) + ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) ) ) |
| 17 |
16
|
sumeq2dv |
|- ( A e. RR -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( ( log ` n ) + ( psi ` ( A / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) ) ) |
| 18 |
|
fveq2 |
|- ( n = m -> ( Lam ` n ) = ( Lam ` m ) ) |
| 19 |
|
oveq2 |
|- ( n = m -> ( A / n ) = ( A / m ) ) |
| 20 |
19
|
fveq2d |
|- ( n = m -> ( psi ` ( A / n ) ) = ( psi ` ( A / m ) ) ) |
| 21 |
18 20
|
oveq12d |
|- ( n = m -> ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) = ( ( Lam ` m ) x. ( psi ` ( A / m ) ) ) ) |
| 22 |
21
|
cbvsumv |
|- sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) = sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` m ) x. ( psi ` ( A / m ) ) ) |
| 23 |
|
fzfid |
|- ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 ... ( |_ ` ( A / m ) ) ) e. Fin ) |
| 24 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` A ) ) -> m e. NN ) |
| 25 |
24
|
adantl |
|- ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m e. NN ) |
| 26 |
|
vmacl |
|- ( m e. NN -> ( Lam ` m ) e. RR ) |
| 27 |
25 26
|
syl |
|- ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` m ) e. RR ) |
| 28 |
27
|
recnd |
|- ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` m ) e. CC ) |
| 29 |
|
elfznn |
|- ( k e. ( 1 ... ( |_ ` ( A / m ) ) ) -> k e. NN ) |
| 30 |
29
|
adantl |
|- ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> k e. NN ) |
| 31 |
|
vmacl |
|- ( k e. NN -> ( Lam ` k ) e. RR ) |
| 32 |
30 31
|
syl |
|- ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> ( Lam ` k ) e. RR ) |
| 33 |
32
|
recnd |
|- ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> ( Lam ` k ) e. CC ) |
| 34 |
23 28 33
|
fsummulc2 |
|- ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( Lam ` m ) x. sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( Lam ` k ) ) = sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( ( Lam ` m ) x. ( Lam ` k ) ) ) |
| 35 |
|
simpl |
|- ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> A e. RR ) |
| 36 |
35 25
|
nndivred |
|- ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( A / m ) e. RR ) |
| 37 |
|
chpval |
|- ( ( A / m ) e. RR -> ( psi ` ( A / m ) ) = sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( Lam ` k ) ) |
| 38 |
36 37
|
syl |
|- ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( psi ` ( A / m ) ) = sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( Lam ` k ) ) |
| 39 |
38
|
oveq2d |
|- ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( A / m ) ) ) = ( ( Lam ` m ) x. sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( Lam ` k ) ) ) |
| 40 |
30
|
nncnd |
|- ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> k e. CC ) |
| 41 |
24
|
ad2antlr |
|- ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> m e. NN ) |
| 42 |
41
|
nncnd |
|- ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> m e. CC ) |
| 43 |
41
|
nnne0d |
|- ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> m =/= 0 ) |
| 44 |
40 42 43
|
divcan3d |
|- ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> ( ( m x. k ) / m ) = k ) |
| 45 |
44
|
fveq2d |
|- ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> ( Lam ` ( ( m x. k ) / m ) ) = ( Lam ` k ) ) |
| 46 |
45
|
oveq2d |
|- ( ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) /\ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> ( ( Lam ` m ) x. ( Lam ` ( ( m x. k ) / m ) ) ) = ( ( Lam ` m ) x. ( Lam ` k ) ) ) |
| 47 |
46
|
sumeq2dv |
|- ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( ( Lam ` m ) x. ( Lam ` ( ( m x. k ) / m ) ) ) = sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( ( Lam ` m ) x. ( Lam ` k ) ) ) |
| 48 |
34 39 47
|
3eqtr4d |
|- ( ( A e. RR /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( A / m ) ) ) = sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( ( Lam ` m ) x. ( Lam ` ( ( m x. k ) / m ) ) ) ) |
| 49 |
48
|
sumeq2dv |
|- ( A e. RR -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` m ) x. ( psi ` ( A / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` A ) ) sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( ( Lam ` m ) x. ( Lam ` ( ( m x. k ) / m ) ) ) ) |
| 50 |
|
fvoveq1 |
|- ( n = ( m x. k ) -> ( Lam ` ( n / m ) ) = ( Lam ` ( ( m x. k ) / m ) ) ) |
| 51 |
50
|
oveq2d |
|- ( n = ( m x. k ) -> ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) = ( ( Lam ` m ) x. ( Lam ` ( ( m x. k ) / m ) ) ) ) |
| 52 |
|
id |
|- ( A e. RR -> A e. RR ) |
| 53 |
|
ssrab2 |
|- { y e. NN | y || n } C_ NN |
| 54 |
|
simpr |
|- ( ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ m e. { y e. NN | y || n } ) -> m e. { y e. NN | y || n } ) |
| 55 |
53 54
|
sselid |
|- ( ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ m e. { y e. NN | y || n } ) -> m e. NN ) |
| 56 |
55 26
|
syl |
|- ( ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ m e. { y e. NN | y || n } ) -> ( Lam ` m ) e. RR ) |
| 57 |
|
dvdsdivcl |
|- ( ( n e. NN /\ m e. { y e. NN | y || n } ) -> ( n / m ) e. { y e. NN | y || n } ) |
| 58 |
4 57
|
sylan |
|- ( ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ m e. { y e. NN | y || n } ) -> ( n / m ) e. { y e. NN | y || n } ) |
| 59 |
53 58
|
sselid |
|- ( ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ m e. { y e. NN | y || n } ) -> ( n / m ) e. NN ) |
| 60 |
|
vmacl |
|- ( ( n / m ) e. NN -> ( Lam ` ( n / m ) ) e. RR ) |
| 61 |
59 60
|
syl |
|- ( ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ m e. { y e. NN | y || n } ) -> ( Lam ` ( n / m ) ) e. RR ) |
| 62 |
56 61
|
remulcld |
|- ( ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ m e. { y e. NN | y || n } ) -> ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) e. RR ) |
| 63 |
62
|
recnd |
|- ( ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ m e. { y e. NN | y || n } ) -> ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) e. CC ) |
| 64 |
63
|
anasss |
|- ( ( A e. RR /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. { y e. NN | y || n } ) ) -> ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) e. CC ) |
| 65 |
51 52 64
|
dvdsflsumcom |
|- ( A e. RR -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` A ) ) sum_ k e. ( 1 ... ( |_ ` ( A / m ) ) ) ( ( Lam ` m ) x. ( Lam ` ( ( m x. k ) / m ) ) ) ) |
| 66 |
49 65
|
eqtr4d |
|- ( A e. RR -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` m ) x. ( psi ` ( A / m ) ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) |
| 67 |
22 66
|
eqtrid |
|- ( A e. RR -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) |
| 68 |
67
|
oveq2d |
|- ( A e. RR -> ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( log ` n ) ) + sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( log ` n ) ) + sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) |
| 69 |
|
fzfid |
|- ( A e. RR -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
| 70 |
7 10
|
mulcld |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( Lam ` n ) x. ( log ` n ) ) e. CC ) |
| 71 |
7 15
|
mulcld |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) e. CC ) |
| 72 |
69 70 71
|
fsumadd |
|- ( A e. RR -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( log ` n ) ) + sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) ) ) |
| 73 |
|
fzfid |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 ... n ) e. Fin ) |
| 74 |
|
dvdsssfz1 |
|- ( n e. NN -> { y e. NN | y || n } C_ ( 1 ... n ) ) |
| 75 |
4 74
|
syl |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> { y e. NN | y || n } C_ ( 1 ... n ) ) |
| 76 |
73 75
|
ssfid |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> { y e. NN | y || n } e. Fin ) |
| 77 |
76 62
|
fsumrecl |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) e. RR ) |
| 78 |
77
|
recnd |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) e. CC ) |
| 79 |
69 70 78
|
fsumadd |
|- ( A e. RR -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( Lam ` n ) x. ( log ` n ) ) + sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) |
| 80 |
68 72 79
|
3eqtr4d |
|- ( A e. RR -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + ( ( Lam ` n ) x. ( psi ` ( A / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) |
| 81 |
2 17 80
|
3eqtrd |
|- ( A e. RR -> ( S ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( ( Lam ` n ) x. ( log ` n ) ) + sum_ m e. { y e. NN | y || n } ( ( Lam ` m ) x. ( Lam ` ( n / m ) ) ) ) ) |