| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 |  |-  ( A = B -> ( A R B <-> B R B ) ) | 
						
							| 2 |  | poirr |  |-  ( ( R Po V /\ B e. V ) -> -. B R B ) | 
						
							| 3 | 2 | adantrl |  |-  ( ( R Po V /\ ( A e. V /\ B e. V ) ) -> -. B R B ) | 
						
							| 4 | 3 | pm2.21d |  |-  ( ( R Po V /\ ( A e. V /\ B e. V ) ) -> ( B R B -> A =/= B ) ) | 
						
							| 5 | 4 | ex |  |-  ( R Po V -> ( ( A e. V /\ B e. V ) -> ( B R B -> A =/= B ) ) ) | 
						
							| 6 | 5 | com13 |  |-  ( B R B -> ( ( A e. V /\ B e. V ) -> ( R Po V -> A =/= B ) ) ) | 
						
							| 7 | 1 6 | biimtrdi |  |-  ( A = B -> ( A R B -> ( ( A e. V /\ B e. V ) -> ( R Po V -> A =/= B ) ) ) ) | 
						
							| 8 | 7 | com24 |  |-  ( A = B -> ( R Po V -> ( ( A e. V /\ B e. V ) -> ( A R B -> A =/= B ) ) ) ) | 
						
							| 9 | 8 | 3impd |  |-  ( A = B -> ( ( R Po V /\ ( A e. V /\ B e. V ) /\ A R B ) -> A =/= B ) ) | 
						
							| 10 |  | ax-1 |  |-  ( A =/= B -> ( ( R Po V /\ ( A e. V /\ B e. V ) /\ A R B ) -> A =/= B ) ) | 
						
							| 11 | 9 10 | pm2.61ine |  |-  ( ( R Po V /\ ( A e. V /\ B e. V ) /\ A R B ) -> A =/= B ) |