| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pockthi.p |  |-  P e. Prime | 
						
							| 2 |  | pockthi.g |  |-  G e. NN | 
						
							| 3 |  | pockthi.m |  |-  M = ( G x. P ) | 
						
							| 4 |  | pockthi.n |  |-  N = ( M + 1 ) | 
						
							| 5 |  | pockthi.d |  |-  D e. NN | 
						
							| 6 |  | pockthi.e |  |-  E e. NN | 
						
							| 7 |  | pockthi.a |  |-  A e. NN | 
						
							| 8 |  | pockthi.fac |  |-  M = ( D x. ( P ^ E ) ) | 
						
							| 9 |  | pockthi.gt |  |-  D < ( P ^ E ) | 
						
							| 10 |  | pockthi.mod |  |-  ( ( A ^ M ) mod N ) = ( 1 mod N ) | 
						
							| 11 |  | pockthi.gcd |  |-  ( ( ( A ^ G ) - 1 ) gcd N ) = 1 | 
						
							| 12 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 13 | 1 12 | ax-mp |  |-  P e. NN | 
						
							| 14 | 6 | nnnn0i |  |-  E e. NN0 | 
						
							| 15 |  | nnexpcl |  |-  ( ( P e. NN /\ E e. NN0 ) -> ( P ^ E ) e. NN ) | 
						
							| 16 | 13 14 15 | mp2an |  |-  ( P ^ E ) e. NN | 
						
							| 17 | 16 | a1i |  |-  ( D e. NN -> ( P ^ E ) e. NN ) | 
						
							| 18 |  | id |  |-  ( D e. NN -> D e. NN ) | 
						
							| 19 | 9 | a1i |  |-  ( D e. NN -> D < ( P ^ E ) ) | 
						
							| 20 | 5 | nncni |  |-  D e. CC | 
						
							| 21 | 16 | nncni |  |-  ( P ^ E ) e. CC | 
						
							| 22 | 20 21 | mulcomi |  |-  ( D x. ( P ^ E ) ) = ( ( P ^ E ) x. D ) | 
						
							| 23 | 8 22 | eqtri |  |-  M = ( ( P ^ E ) x. D ) | 
						
							| 24 | 23 | oveq1i |  |-  ( M + 1 ) = ( ( ( P ^ E ) x. D ) + 1 ) | 
						
							| 25 | 4 24 | eqtri |  |-  N = ( ( ( P ^ E ) x. D ) + 1 ) | 
						
							| 26 | 25 | a1i |  |-  ( D e. NN -> N = ( ( ( P ^ E ) x. D ) + 1 ) ) | 
						
							| 27 |  | prmdvdsexpb |  |-  ( ( x e. Prime /\ P e. Prime /\ E e. NN ) -> ( x || ( P ^ E ) <-> x = P ) ) | 
						
							| 28 | 1 6 27 | mp3an23 |  |-  ( x e. Prime -> ( x || ( P ^ E ) <-> x = P ) ) | 
						
							| 29 | 2 13 | nnmulcli |  |-  ( G x. P ) e. NN | 
						
							| 30 | 3 29 | eqeltri |  |-  M e. NN | 
						
							| 31 | 30 | nncni |  |-  M e. CC | 
						
							| 32 |  | ax-1cn |  |-  1 e. CC | 
						
							| 33 | 31 32 4 | mvrraddi |  |-  ( N - 1 ) = M | 
						
							| 34 | 33 | oveq2i |  |-  ( A ^ ( N - 1 ) ) = ( A ^ M ) | 
						
							| 35 | 34 | oveq1i |  |-  ( ( A ^ ( N - 1 ) ) mod N ) = ( ( A ^ M ) mod N ) | 
						
							| 36 |  | peano2nn |  |-  ( M e. NN -> ( M + 1 ) e. NN ) | 
						
							| 37 | 30 36 | ax-mp |  |-  ( M + 1 ) e. NN | 
						
							| 38 | 4 37 | eqeltri |  |-  N e. NN | 
						
							| 39 | 38 | nnrei |  |-  N e. RR | 
						
							| 40 | 30 | nngt0i |  |-  0 < M | 
						
							| 41 | 30 | nnrei |  |-  M e. RR | 
						
							| 42 |  | 1re |  |-  1 e. RR | 
						
							| 43 |  | ltaddpos2 |  |-  ( ( M e. RR /\ 1 e. RR ) -> ( 0 < M <-> 1 < ( M + 1 ) ) ) | 
						
							| 44 | 41 42 43 | mp2an |  |-  ( 0 < M <-> 1 < ( M + 1 ) ) | 
						
							| 45 | 40 44 | mpbi |  |-  1 < ( M + 1 ) | 
						
							| 46 | 45 4 | breqtrri |  |-  1 < N | 
						
							| 47 |  | 1mod |  |-  ( ( N e. RR /\ 1 < N ) -> ( 1 mod N ) = 1 ) | 
						
							| 48 | 39 46 47 | mp2an |  |-  ( 1 mod N ) = 1 | 
						
							| 49 | 10 48 | eqtri |  |-  ( ( A ^ M ) mod N ) = 1 | 
						
							| 50 | 35 49 | eqtri |  |-  ( ( A ^ ( N - 1 ) ) mod N ) = 1 | 
						
							| 51 |  | oveq2 |  |-  ( x = P -> ( ( N - 1 ) / x ) = ( ( N - 1 ) / P ) ) | 
						
							| 52 | 2 | nncni |  |-  G e. CC | 
						
							| 53 | 13 | nncni |  |-  P e. CC | 
						
							| 54 | 52 53 | mulcomi |  |-  ( G x. P ) = ( P x. G ) | 
						
							| 55 | 33 3 54 | 3eqtrri |  |-  ( P x. G ) = ( N - 1 ) | 
						
							| 56 | 38 | nncni |  |-  N e. CC | 
						
							| 57 | 56 32 | subcli |  |-  ( N - 1 ) e. CC | 
						
							| 58 | 13 | nnne0i |  |-  P =/= 0 | 
						
							| 59 | 57 53 52 58 | divmuli |  |-  ( ( ( N - 1 ) / P ) = G <-> ( P x. G ) = ( N - 1 ) ) | 
						
							| 60 | 55 59 | mpbir |  |-  ( ( N - 1 ) / P ) = G | 
						
							| 61 | 51 60 | eqtrdi |  |-  ( x = P -> ( ( N - 1 ) / x ) = G ) | 
						
							| 62 | 61 | oveq2d |  |-  ( x = P -> ( A ^ ( ( N - 1 ) / x ) ) = ( A ^ G ) ) | 
						
							| 63 | 62 | oveq1d |  |-  ( x = P -> ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) = ( ( A ^ G ) - 1 ) ) | 
						
							| 64 | 63 | oveq1d |  |-  ( x = P -> ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = ( ( ( A ^ G ) - 1 ) gcd N ) ) | 
						
							| 65 | 64 11 | eqtrdi |  |-  ( x = P -> ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) | 
						
							| 66 | 7 | nnzi |  |-  A e. ZZ | 
						
							| 67 |  | oveq1 |  |-  ( y = A -> ( y ^ ( N - 1 ) ) = ( A ^ ( N - 1 ) ) ) | 
						
							| 68 | 67 | oveq1d |  |-  ( y = A -> ( ( y ^ ( N - 1 ) ) mod N ) = ( ( A ^ ( N - 1 ) ) mod N ) ) | 
						
							| 69 | 68 | eqeq1d |  |-  ( y = A -> ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 <-> ( ( A ^ ( N - 1 ) ) mod N ) = 1 ) ) | 
						
							| 70 |  | oveq1 |  |-  ( y = A -> ( y ^ ( ( N - 1 ) / x ) ) = ( A ^ ( ( N - 1 ) / x ) ) ) | 
						
							| 71 | 70 | oveq1d |  |-  ( y = A -> ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) = ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) ) | 
						
							| 72 | 71 | oveq1d |  |-  ( y = A -> ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) ) | 
						
							| 73 | 72 | eqeq1d |  |-  ( y = A -> ( ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 <-> ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) | 
						
							| 74 | 69 73 | anbi12d |  |-  ( y = A -> ( ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) <-> ( ( ( A ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) ) | 
						
							| 75 | 74 | rspcev |  |-  ( ( A e. ZZ /\ ( ( ( A ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) | 
						
							| 76 | 66 75 | mpan |  |-  ( ( ( ( A ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) | 
						
							| 77 | 50 65 76 | sylancr |  |-  ( x = P -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) | 
						
							| 78 | 28 77 | biimtrdi |  |-  ( x e. Prime -> ( x || ( P ^ E ) -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) ) | 
						
							| 79 | 78 | rgen |  |-  A. x e. Prime ( x || ( P ^ E ) -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) | 
						
							| 80 | 79 | a1i |  |-  ( D e. NN -> A. x e. Prime ( x || ( P ^ E ) -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) ) | 
						
							| 81 | 17 18 19 26 80 | pockthg |  |-  ( D e. NN -> N e. Prime ) | 
						
							| 82 | 5 81 | ax-mp |  |-  N e. Prime |