| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pockthi.p |
|- P e. Prime |
| 2 |
|
pockthi.g |
|- G e. NN |
| 3 |
|
pockthi.m |
|- M = ( G x. P ) |
| 4 |
|
pockthi.n |
|- N = ( M + 1 ) |
| 5 |
|
pockthi.d |
|- D e. NN |
| 6 |
|
pockthi.e |
|- E e. NN |
| 7 |
|
pockthi.a |
|- A e. NN |
| 8 |
|
pockthi.fac |
|- M = ( D x. ( P ^ E ) ) |
| 9 |
|
pockthi.gt |
|- D < ( P ^ E ) |
| 10 |
|
pockthi.mod |
|- ( ( A ^ M ) mod N ) = ( 1 mod N ) |
| 11 |
|
pockthi.gcd |
|- ( ( ( A ^ G ) - 1 ) gcd N ) = 1 |
| 12 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 13 |
1 12
|
ax-mp |
|- P e. NN |
| 14 |
6
|
nnnn0i |
|- E e. NN0 |
| 15 |
|
nnexpcl |
|- ( ( P e. NN /\ E e. NN0 ) -> ( P ^ E ) e. NN ) |
| 16 |
13 14 15
|
mp2an |
|- ( P ^ E ) e. NN |
| 17 |
16
|
a1i |
|- ( D e. NN -> ( P ^ E ) e. NN ) |
| 18 |
|
id |
|- ( D e. NN -> D e. NN ) |
| 19 |
9
|
a1i |
|- ( D e. NN -> D < ( P ^ E ) ) |
| 20 |
5
|
nncni |
|- D e. CC |
| 21 |
16
|
nncni |
|- ( P ^ E ) e. CC |
| 22 |
20 21
|
mulcomi |
|- ( D x. ( P ^ E ) ) = ( ( P ^ E ) x. D ) |
| 23 |
8 22
|
eqtri |
|- M = ( ( P ^ E ) x. D ) |
| 24 |
23
|
oveq1i |
|- ( M + 1 ) = ( ( ( P ^ E ) x. D ) + 1 ) |
| 25 |
4 24
|
eqtri |
|- N = ( ( ( P ^ E ) x. D ) + 1 ) |
| 26 |
25
|
a1i |
|- ( D e. NN -> N = ( ( ( P ^ E ) x. D ) + 1 ) ) |
| 27 |
|
prmdvdsexpb |
|- ( ( x e. Prime /\ P e. Prime /\ E e. NN ) -> ( x || ( P ^ E ) <-> x = P ) ) |
| 28 |
1 6 27
|
mp3an23 |
|- ( x e. Prime -> ( x || ( P ^ E ) <-> x = P ) ) |
| 29 |
2 13
|
nnmulcli |
|- ( G x. P ) e. NN |
| 30 |
3 29
|
eqeltri |
|- M e. NN |
| 31 |
30
|
nncni |
|- M e. CC |
| 32 |
|
ax-1cn |
|- 1 e. CC |
| 33 |
31 32 4
|
mvrraddi |
|- ( N - 1 ) = M |
| 34 |
33
|
oveq2i |
|- ( A ^ ( N - 1 ) ) = ( A ^ M ) |
| 35 |
34
|
oveq1i |
|- ( ( A ^ ( N - 1 ) ) mod N ) = ( ( A ^ M ) mod N ) |
| 36 |
|
peano2nn |
|- ( M e. NN -> ( M + 1 ) e. NN ) |
| 37 |
30 36
|
ax-mp |
|- ( M + 1 ) e. NN |
| 38 |
4 37
|
eqeltri |
|- N e. NN |
| 39 |
38
|
nnrei |
|- N e. RR |
| 40 |
30
|
nngt0i |
|- 0 < M |
| 41 |
30
|
nnrei |
|- M e. RR |
| 42 |
|
1re |
|- 1 e. RR |
| 43 |
|
ltaddpos2 |
|- ( ( M e. RR /\ 1 e. RR ) -> ( 0 < M <-> 1 < ( M + 1 ) ) ) |
| 44 |
41 42 43
|
mp2an |
|- ( 0 < M <-> 1 < ( M + 1 ) ) |
| 45 |
40 44
|
mpbi |
|- 1 < ( M + 1 ) |
| 46 |
45 4
|
breqtrri |
|- 1 < N |
| 47 |
|
1mod |
|- ( ( N e. RR /\ 1 < N ) -> ( 1 mod N ) = 1 ) |
| 48 |
39 46 47
|
mp2an |
|- ( 1 mod N ) = 1 |
| 49 |
10 48
|
eqtri |
|- ( ( A ^ M ) mod N ) = 1 |
| 50 |
35 49
|
eqtri |
|- ( ( A ^ ( N - 1 ) ) mod N ) = 1 |
| 51 |
|
oveq2 |
|- ( x = P -> ( ( N - 1 ) / x ) = ( ( N - 1 ) / P ) ) |
| 52 |
2
|
nncni |
|- G e. CC |
| 53 |
13
|
nncni |
|- P e. CC |
| 54 |
52 53
|
mulcomi |
|- ( G x. P ) = ( P x. G ) |
| 55 |
33 3 54
|
3eqtrri |
|- ( P x. G ) = ( N - 1 ) |
| 56 |
38
|
nncni |
|- N e. CC |
| 57 |
56 32
|
subcli |
|- ( N - 1 ) e. CC |
| 58 |
13
|
nnne0i |
|- P =/= 0 |
| 59 |
57 53 52 58
|
divmuli |
|- ( ( ( N - 1 ) / P ) = G <-> ( P x. G ) = ( N - 1 ) ) |
| 60 |
55 59
|
mpbir |
|- ( ( N - 1 ) / P ) = G |
| 61 |
51 60
|
eqtrdi |
|- ( x = P -> ( ( N - 1 ) / x ) = G ) |
| 62 |
61
|
oveq2d |
|- ( x = P -> ( A ^ ( ( N - 1 ) / x ) ) = ( A ^ G ) ) |
| 63 |
62
|
oveq1d |
|- ( x = P -> ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) = ( ( A ^ G ) - 1 ) ) |
| 64 |
63
|
oveq1d |
|- ( x = P -> ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = ( ( ( A ^ G ) - 1 ) gcd N ) ) |
| 65 |
64 11
|
eqtrdi |
|- ( x = P -> ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) |
| 66 |
7
|
nnzi |
|- A e. ZZ |
| 67 |
|
oveq1 |
|- ( y = A -> ( y ^ ( N - 1 ) ) = ( A ^ ( N - 1 ) ) ) |
| 68 |
67
|
oveq1d |
|- ( y = A -> ( ( y ^ ( N - 1 ) ) mod N ) = ( ( A ^ ( N - 1 ) ) mod N ) ) |
| 69 |
68
|
eqeq1d |
|- ( y = A -> ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 <-> ( ( A ^ ( N - 1 ) ) mod N ) = 1 ) ) |
| 70 |
|
oveq1 |
|- ( y = A -> ( y ^ ( ( N - 1 ) / x ) ) = ( A ^ ( ( N - 1 ) / x ) ) ) |
| 71 |
70
|
oveq1d |
|- ( y = A -> ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) = ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) ) |
| 72 |
71
|
oveq1d |
|- ( y = A -> ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) ) |
| 73 |
72
|
eqeq1d |
|- ( y = A -> ( ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 <-> ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) |
| 74 |
69 73
|
anbi12d |
|- ( y = A -> ( ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) <-> ( ( ( A ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) ) |
| 75 |
74
|
rspcev |
|- ( ( A e. ZZ /\ ( ( ( A ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) |
| 76 |
66 75
|
mpan |
|- ( ( ( ( A ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( A ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) |
| 77 |
50 65 76
|
sylancr |
|- ( x = P -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) |
| 78 |
28 77
|
biimtrdi |
|- ( x e. Prime -> ( x || ( P ^ E ) -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) ) |
| 79 |
78
|
rgen |
|- A. x e. Prime ( x || ( P ^ E ) -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) |
| 80 |
79
|
a1i |
|- ( D e. NN -> A. x e. Prime ( x || ( P ^ E ) -> E. y e. ZZ ( ( ( y ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( y ^ ( ( N - 1 ) / x ) ) - 1 ) gcd N ) = 1 ) ) ) |
| 81 |
17 18 19 26 80
|
pockthg |
|- ( D e. NN -> N e. Prime ) |
| 82 |
5 81
|
ax-mp |
|- N e. Prime |