Step |
Hyp |
Ref |
Expression |
1 |
|
pockthg.1 |
|- ( ph -> A e. NN ) |
2 |
|
pockthg.2 |
|- ( ph -> B e. NN ) |
3 |
|
pockthg.3 |
|- ( ph -> B < A ) |
4 |
|
pockthg.4 |
|- ( ph -> N = ( ( A x. B ) + 1 ) ) |
5 |
|
pockthlem.5 |
|- ( ph -> P e. Prime ) |
6 |
|
pockthlem.6 |
|- ( ph -> P || N ) |
7 |
|
pockthlem.7 |
|- ( ph -> Q e. Prime ) |
8 |
|
pockthlem.8 |
|- ( ph -> ( Q pCnt A ) e. NN ) |
9 |
|
pockthlem.9 |
|- ( ph -> C e. ZZ ) |
10 |
|
pockthlem.10 |
|- ( ph -> ( ( C ^ ( N - 1 ) ) mod N ) = 1 ) |
11 |
|
pockthlem.11 |
|- ( ph -> ( ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) gcd N ) = 1 ) |
12 |
|
prmnn |
|- ( Q e. Prime -> Q e. NN ) |
13 |
7 12
|
syl |
|- ( ph -> Q e. NN ) |
14 |
8
|
nnnn0d |
|- ( ph -> ( Q pCnt A ) e. NN0 ) |
15 |
13 14
|
nnexpcld |
|- ( ph -> ( Q ^ ( Q pCnt A ) ) e. NN ) |
16 |
15
|
nnzd |
|- ( ph -> ( Q ^ ( Q pCnt A ) ) e. ZZ ) |
17 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
18 |
5 17
|
syl |
|- ( ph -> P e. NN ) |
19 |
18
|
nnzd |
|- ( ph -> P e. ZZ ) |
20 |
|
gcddvds |
|- ( ( C e. ZZ /\ P e. ZZ ) -> ( ( C gcd P ) || C /\ ( C gcd P ) || P ) ) |
21 |
9 19 20
|
syl2anc |
|- ( ph -> ( ( C gcd P ) || C /\ ( C gcd P ) || P ) ) |
22 |
21
|
simpld |
|- ( ph -> ( C gcd P ) || C ) |
23 |
9 19
|
gcdcld |
|- ( ph -> ( C gcd P ) e. NN0 ) |
24 |
23
|
nn0zd |
|- ( ph -> ( C gcd P ) e. ZZ ) |
25 |
1 2
|
nnmulcld |
|- ( ph -> ( A x. B ) e. NN ) |
26 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
27 |
25 26
|
eleqtrdi |
|- ( ph -> ( A x. B ) e. ( ZZ>= ` 1 ) ) |
28 |
|
eluzp1p1 |
|- ( ( A x. B ) e. ( ZZ>= ` 1 ) -> ( ( A x. B ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
29 |
27 28
|
syl |
|- ( ph -> ( ( A x. B ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
30 |
4 29
|
eqeltrd |
|- ( ph -> N e. ( ZZ>= ` ( 1 + 1 ) ) ) |
31 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
32 |
31
|
fveq2i |
|- ( ZZ>= ` 2 ) = ( ZZ>= ` ( 1 + 1 ) ) |
33 |
30 32
|
eleqtrrdi |
|- ( ph -> N e. ( ZZ>= ` 2 ) ) |
34 |
|
eluz2b2 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ 1 < N ) ) |
35 |
33 34
|
sylib |
|- ( ph -> ( N e. NN /\ 1 < N ) ) |
36 |
35
|
simpld |
|- ( ph -> N e. NN ) |
37 |
36
|
nnzd |
|- ( ph -> N e. ZZ ) |
38 |
21
|
simprd |
|- ( ph -> ( C gcd P ) || P ) |
39 |
24 19 37 38 6
|
dvdstrd |
|- ( ph -> ( C gcd P ) || N ) |
40 |
36
|
nnne0d |
|- ( ph -> N =/= 0 ) |
41 |
|
simpr |
|- ( ( C = 0 /\ N = 0 ) -> N = 0 ) |
42 |
41
|
necon3ai |
|- ( N =/= 0 -> -. ( C = 0 /\ N = 0 ) ) |
43 |
40 42
|
syl |
|- ( ph -> -. ( C = 0 /\ N = 0 ) ) |
44 |
|
dvdslegcd |
|- ( ( ( ( C gcd P ) e. ZZ /\ C e. ZZ /\ N e. ZZ ) /\ -. ( C = 0 /\ N = 0 ) ) -> ( ( ( C gcd P ) || C /\ ( C gcd P ) || N ) -> ( C gcd P ) <_ ( C gcd N ) ) ) |
45 |
24 9 37 43 44
|
syl31anc |
|- ( ph -> ( ( ( C gcd P ) || C /\ ( C gcd P ) || N ) -> ( C gcd P ) <_ ( C gcd N ) ) ) |
46 |
22 39 45
|
mp2and |
|- ( ph -> ( C gcd P ) <_ ( C gcd N ) ) |
47 |
10
|
oveq1d |
|- ( ph -> ( ( ( C ^ ( N - 1 ) ) mod N ) gcd N ) = ( 1 gcd N ) ) |
48 |
|
1z |
|- 1 e. ZZ |
49 |
|
eluzp1m1 |
|- ( ( 1 e. ZZ /\ N e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` 1 ) ) |
50 |
48 30 49
|
sylancr |
|- ( ph -> ( N - 1 ) e. ( ZZ>= ` 1 ) ) |
51 |
50 26
|
eleqtrrdi |
|- ( ph -> ( N - 1 ) e. NN ) |
52 |
51
|
nnnn0d |
|- ( ph -> ( N - 1 ) e. NN0 ) |
53 |
|
zexpcl |
|- ( ( C e. ZZ /\ ( N - 1 ) e. NN0 ) -> ( C ^ ( N - 1 ) ) e. ZZ ) |
54 |
9 52 53
|
syl2anc |
|- ( ph -> ( C ^ ( N - 1 ) ) e. ZZ ) |
55 |
|
modgcd |
|- ( ( ( C ^ ( N - 1 ) ) e. ZZ /\ N e. NN ) -> ( ( ( C ^ ( N - 1 ) ) mod N ) gcd N ) = ( ( C ^ ( N - 1 ) ) gcd N ) ) |
56 |
54 36 55
|
syl2anc |
|- ( ph -> ( ( ( C ^ ( N - 1 ) ) mod N ) gcd N ) = ( ( C ^ ( N - 1 ) ) gcd N ) ) |
57 |
|
gcdcom |
|- ( ( 1 e. ZZ /\ N e. ZZ ) -> ( 1 gcd N ) = ( N gcd 1 ) ) |
58 |
48 37 57
|
sylancr |
|- ( ph -> ( 1 gcd N ) = ( N gcd 1 ) ) |
59 |
|
gcd1 |
|- ( N e. ZZ -> ( N gcd 1 ) = 1 ) |
60 |
37 59
|
syl |
|- ( ph -> ( N gcd 1 ) = 1 ) |
61 |
58 60
|
eqtrd |
|- ( ph -> ( 1 gcd N ) = 1 ) |
62 |
47 56 61
|
3eqtr3d |
|- ( ph -> ( ( C ^ ( N - 1 ) ) gcd N ) = 1 ) |
63 |
|
rpexp |
|- ( ( C e. ZZ /\ N e. ZZ /\ ( N - 1 ) e. NN ) -> ( ( ( C ^ ( N - 1 ) ) gcd N ) = 1 <-> ( C gcd N ) = 1 ) ) |
64 |
9 37 51 63
|
syl3anc |
|- ( ph -> ( ( ( C ^ ( N - 1 ) ) gcd N ) = 1 <-> ( C gcd N ) = 1 ) ) |
65 |
62 64
|
mpbid |
|- ( ph -> ( C gcd N ) = 1 ) |
66 |
46 65
|
breqtrd |
|- ( ph -> ( C gcd P ) <_ 1 ) |
67 |
18
|
nnne0d |
|- ( ph -> P =/= 0 ) |
68 |
|
simpr |
|- ( ( C = 0 /\ P = 0 ) -> P = 0 ) |
69 |
68
|
necon3ai |
|- ( P =/= 0 -> -. ( C = 0 /\ P = 0 ) ) |
70 |
67 69
|
syl |
|- ( ph -> -. ( C = 0 /\ P = 0 ) ) |
71 |
|
gcdn0cl |
|- ( ( ( C e. ZZ /\ P e. ZZ ) /\ -. ( C = 0 /\ P = 0 ) ) -> ( C gcd P ) e. NN ) |
72 |
9 19 70 71
|
syl21anc |
|- ( ph -> ( C gcd P ) e. NN ) |
73 |
|
nnle1eq1 |
|- ( ( C gcd P ) e. NN -> ( ( C gcd P ) <_ 1 <-> ( C gcd P ) = 1 ) ) |
74 |
72 73
|
syl |
|- ( ph -> ( ( C gcd P ) <_ 1 <-> ( C gcd P ) = 1 ) ) |
75 |
66 74
|
mpbid |
|- ( ph -> ( C gcd P ) = 1 ) |
76 |
|
odzcl |
|- ( ( P e. NN /\ C e. ZZ /\ ( C gcd P ) = 1 ) -> ( ( odZ ` P ) ` C ) e. NN ) |
77 |
18 9 75 76
|
syl3anc |
|- ( ph -> ( ( odZ ` P ) ` C ) e. NN ) |
78 |
77
|
nnzd |
|- ( ph -> ( ( odZ ` P ) ` C ) e. ZZ ) |
79 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
80 |
5 79
|
syl |
|- ( ph -> P e. ( ZZ>= ` 2 ) ) |
81 |
80 32
|
eleqtrdi |
|- ( ph -> P e. ( ZZ>= ` ( 1 + 1 ) ) ) |
82 |
|
eluzp1m1 |
|- ( ( 1 e. ZZ /\ P e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( P - 1 ) e. ( ZZ>= ` 1 ) ) |
83 |
48 81 82
|
sylancr |
|- ( ph -> ( P - 1 ) e. ( ZZ>= ` 1 ) ) |
84 |
83 26
|
eleqtrrdi |
|- ( ph -> ( P - 1 ) e. NN ) |
85 |
84
|
nnzd |
|- ( ph -> ( P - 1 ) e. ZZ ) |
86 |
1
|
nnzd |
|- ( ph -> A e. ZZ ) |
87 |
51
|
nnzd |
|- ( ph -> ( N - 1 ) e. ZZ ) |
88 |
|
pcdvds |
|- ( ( Q e. Prime /\ A e. NN ) -> ( Q ^ ( Q pCnt A ) ) || A ) |
89 |
7 1 88
|
syl2anc |
|- ( ph -> ( Q ^ ( Q pCnt A ) ) || A ) |
90 |
2
|
nnzd |
|- ( ph -> B e. ZZ ) |
91 |
|
dvdsmul1 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> A || ( A x. B ) ) |
92 |
86 90 91
|
syl2anc |
|- ( ph -> A || ( A x. B ) ) |
93 |
4
|
oveq1d |
|- ( ph -> ( N - 1 ) = ( ( ( A x. B ) + 1 ) - 1 ) ) |
94 |
25
|
nncnd |
|- ( ph -> ( A x. B ) e. CC ) |
95 |
|
ax-1cn |
|- 1 e. CC |
96 |
|
pncan |
|- ( ( ( A x. B ) e. CC /\ 1 e. CC ) -> ( ( ( A x. B ) + 1 ) - 1 ) = ( A x. B ) ) |
97 |
94 95 96
|
sylancl |
|- ( ph -> ( ( ( A x. B ) + 1 ) - 1 ) = ( A x. B ) ) |
98 |
93 97
|
eqtrd |
|- ( ph -> ( N - 1 ) = ( A x. B ) ) |
99 |
92 98
|
breqtrrd |
|- ( ph -> A || ( N - 1 ) ) |
100 |
16 86 87 89 99
|
dvdstrd |
|- ( ph -> ( Q ^ ( Q pCnt A ) ) || ( N - 1 ) ) |
101 |
15
|
nnne0d |
|- ( ph -> ( Q ^ ( Q pCnt A ) ) =/= 0 ) |
102 |
|
dvdsval2 |
|- ( ( ( Q ^ ( Q pCnt A ) ) e. ZZ /\ ( Q ^ ( Q pCnt A ) ) =/= 0 /\ ( N - 1 ) e. ZZ ) -> ( ( Q ^ ( Q pCnt A ) ) || ( N - 1 ) <-> ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) e. ZZ ) ) |
103 |
16 101 87 102
|
syl3anc |
|- ( ph -> ( ( Q ^ ( Q pCnt A ) ) || ( N - 1 ) <-> ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) e. ZZ ) ) |
104 |
100 103
|
mpbid |
|- ( ph -> ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) e. ZZ ) |
105 |
|
peano2zm |
|- ( ( C ^ ( N - 1 ) ) e. ZZ -> ( ( C ^ ( N - 1 ) ) - 1 ) e. ZZ ) |
106 |
54 105
|
syl |
|- ( ph -> ( ( C ^ ( N - 1 ) ) - 1 ) e. ZZ ) |
107 |
36
|
nnred |
|- ( ph -> N e. RR ) |
108 |
35
|
simprd |
|- ( ph -> 1 < N ) |
109 |
|
1mod |
|- ( ( N e. RR /\ 1 < N ) -> ( 1 mod N ) = 1 ) |
110 |
107 108 109
|
syl2anc |
|- ( ph -> ( 1 mod N ) = 1 ) |
111 |
10 110
|
eqtr4d |
|- ( ph -> ( ( C ^ ( N - 1 ) ) mod N ) = ( 1 mod N ) ) |
112 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
113 |
|
moddvds |
|- ( ( N e. NN /\ ( C ^ ( N - 1 ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( C ^ ( N - 1 ) ) mod N ) = ( 1 mod N ) <-> N || ( ( C ^ ( N - 1 ) ) - 1 ) ) ) |
114 |
36 54 112 113
|
syl3anc |
|- ( ph -> ( ( ( C ^ ( N - 1 ) ) mod N ) = ( 1 mod N ) <-> N || ( ( C ^ ( N - 1 ) ) - 1 ) ) ) |
115 |
111 114
|
mpbid |
|- ( ph -> N || ( ( C ^ ( N - 1 ) ) - 1 ) ) |
116 |
19 37 106 6 115
|
dvdstrd |
|- ( ph -> P || ( ( C ^ ( N - 1 ) ) - 1 ) ) |
117 |
|
odzdvds |
|- ( ( ( P e. NN /\ C e. ZZ /\ ( C gcd P ) = 1 ) /\ ( N - 1 ) e. NN0 ) -> ( P || ( ( C ^ ( N - 1 ) ) - 1 ) <-> ( ( odZ ` P ) ` C ) || ( N - 1 ) ) ) |
118 |
18 9 75 52 117
|
syl31anc |
|- ( ph -> ( P || ( ( C ^ ( N - 1 ) ) - 1 ) <-> ( ( odZ ` P ) ` C ) || ( N - 1 ) ) ) |
119 |
116 118
|
mpbid |
|- ( ph -> ( ( odZ ` P ) ` C ) || ( N - 1 ) ) |
120 |
51
|
nncnd |
|- ( ph -> ( N - 1 ) e. CC ) |
121 |
15
|
nncnd |
|- ( ph -> ( Q ^ ( Q pCnt A ) ) e. CC ) |
122 |
120 121 101
|
divcan1d |
|- ( ph -> ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( Q pCnt A ) ) ) = ( N - 1 ) ) |
123 |
119 122
|
breqtrrd |
|- ( ph -> ( ( odZ ` P ) ` C ) || ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( Q pCnt A ) ) ) ) |
124 |
|
nprmdvds1 |
|- ( P e. Prime -> -. P || 1 ) |
125 |
5 124
|
syl |
|- ( ph -> -. P || 1 ) |
126 |
13
|
nnzd |
|- ( ph -> Q e. ZZ ) |
127 |
|
iddvdsexp |
|- ( ( Q e. ZZ /\ ( Q pCnt A ) e. NN ) -> Q || ( Q ^ ( Q pCnt A ) ) ) |
128 |
126 8 127
|
syl2anc |
|- ( ph -> Q || ( Q ^ ( Q pCnt A ) ) ) |
129 |
126 16 87 128 100
|
dvdstrd |
|- ( ph -> Q || ( N - 1 ) ) |
130 |
13
|
nnne0d |
|- ( ph -> Q =/= 0 ) |
131 |
|
dvdsval2 |
|- ( ( Q e. ZZ /\ Q =/= 0 /\ ( N - 1 ) e. ZZ ) -> ( Q || ( N - 1 ) <-> ( ( N - 1 ) / Q ) e. ZZ ) ) |
132 |
126 130 87 131
|
syl3anc |
|- ( ph -> ( Q || ( N - 1 ) <-> ( ( N - 1 ) / Q ) e. ZZ ) ) |
133 |
129 132
|
mpbid |
|- ( ph -> ( ( N - 1 ) / Q ) e. ZZ ) |
134 |
52
|
nn0ge0d |
|- ( ph -> 0 <_ ( N - 1 ) ) |
135 |
51
|
nnred |
|- ( ph -> ( N - 1 ) e. RR ) |
136 |
13
|
nnred |
|- ( ph -> Q e. RR ) |
137 |
13
|
nngt0d |
|- ( ph -> 0 < Q ) |
138 |
|
ge0div |
|- ( ( ( N - 1 ) e. RR /\ Q e. RR /\ 0 < Q ) -> ( 0 <_ ( N - 1 ) <-> 0 <_ ( ( N - 1 ) / Q ) ) ) |
139 |
135 136 137 138
|
syl3anc |
|- ( ph -> ( 0 <_ ( N - 1 ) <-> 0 <_ ( ( N - 1 ) / Q ) ) ) |
140 |
134 139
|
mpbid |
|- ( ph -> 0 <_ ( ( N - 1 ) / Q ) ) |
141 |
|
elnn0z |
|- ( ( ( N - 1 ) / Q ) e. NN0 <-> ( ( ( N - 1 ) / Q ) e. ZZ /\ 0 <_ ( ( N - 1 ) / Q ) ) ) |
142 |
133 140 141
|
sylanbrc |
|- ( ph -> ( ( N - 1 ) / Q ) e. NN0 ) |
143 |
|
zexpcl |
|- ( ( C e. ZZ /\ ( ( N - 1 ) / Q ) e. NN0 ) -> ( C ^ ( ( N - 1 ) / Q ) ) e. ZZ ) |
144 |
9 142 143
|
syl2anc |
|- ( ph -> ( C ^ ( ( N - 1 ) / Q ) ) e. ZZ ) |
145 |
|
peano2zm |
|- ( ( C ^ ( ( N - 1 ) / Q ) ) e. ZZ -> ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) e. ZZ ) |
146 |
144 145
|
syl |
|- ( ph -> ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) e. ZZ ) |
147 |
|
dvdsgcd |
|- ( ( P e. ZZ /\ ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) e. ZZ /\ N e. ZZ ) -> ( ( P || ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) /\ P || N ) -> P || ( ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) gcd N ) ) ) |
148 |
19 146 37 147
|
syl3anc |
|- ( ph -> ( ( P || ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) /\ P || N ) -> P || ( ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) gcd N ) ) ) |
149 |
6 148
|
mpan2d |
|- ( ph -> ( P || ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) -> P || ( ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) gcd N ) ) ) |
150 |
|
odzdvds |
|- ( ( ( P e. NN /\ C e. ZZ /\ ( C gcd P ) = 1 ) /\ ( ( N - 1 ) / Q ) e. NN0 ) -> ( P || ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) <-> ( ( odZ ` P ) ` C ) || ( ( N - 1 ) / Q ) ) ) |
151 |
18 9 75 142 150
|
syl31anc |
|- ( ph -> ( P || ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) <-> ( ( odZ ` P ) ` C ) || ( ( N - 1 ) / Q ) ) ) |
152 |
13
|
nncnd |
|- ( ph -> Q e. CC ) |
153 |
8
|
nnzd |
|- ( ph -> ( Q pCnt A ) e. ZZ ) |
154 |
152 130 153
|
expm1d |
|- ( ph -> ( Q ^ ( ( Q pCnt A ) - 1 ) ) = ( ( Q ^ ( Q pCnt A ) ) / Q ) ) |
155 |
154
|
oveq2d |
|- ( ph -> ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( ( Q pCnt A ) - 1 ) ) ) = ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( ( Q ^ ( Q pCnt A ) ) / Q ) ) ) |
156 |
135 15
|
nndivred |
|- ( ph -> ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) e. RR ) |
157 |
156
|
recnd |
|- ( ph -> ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) e. CC ) |
158 |
157 121 152 130
|
divassd |
|- ( ph -> ( ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( Q pCnt A ) ) ) / Q ) = ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( ( Q ^ ( Q pCnt A ) ) / Q ) ) ) |
159 |
122
|
oveq1d |
|- ( ph -> ( ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( Q pCnt A ) ) ) / Q ) = ( ( N - 1 ) / Q ) ) |
160 |
155 158 159
|
3eqtr2d |
|- ( ph -> ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( ( Q pCnt A ) - 1 ) ) ) = ( ( N - 1 ) / Q ) ) |
161 |
160
|
breq2d |
|- ( ph -> ( ( ( odZ ` P ) ` C ) || ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( ( Q pCnt A ) - 1 ) ) ) <-> ( ( odZ ` P ) ` C ) || ( ( N - 1 ) / Q ) ) ) |
162 |
151 161
|
bitr4d |
|- ( ph -> ( P || ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) <-> ( ( odZ ` P ) ` C ) || ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( ( Q pCnt A ) - 1 ) ) ) ) ) |
163 |
11
|
breq2d |
|- ( ph -> ( P || ( ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) gcd N ) <-> P || 1 ) ) |
164 |
149 162 163
|
3imtr3d |
|- ( ph -> ( ( ( odZ ` P ) ` C ) || ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( ( Q pCnt A ) - 1 ) ) ) -> P || 1 ) ) |
165 |
125 164
|
mtod |
|- ( ph -> -. ( ( odZ ` P ) ` C ) || ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( ( Q pCnt A ) - 1 ) ) ) ) |
166 |
|
prmpwdvds |
|- ( ( ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) e. ZZ /\ ( ( odZ ` P ) ` C ) e. ZZ ) /\ ( Q e. Prime /\ ( Q pCnt A ) e. NN ) /\ ( ( ( odZ ` P ) ` C ) || ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( Q pCnt A ) ) ) /\ -. ( ( odZ ` P ) ` C ) || ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( ( Q pCnt A ) - 1 ) ) ) ) ) -> ( Q ^ ( Q pCnt A ) ) || ( ( odZ ` P ) ` C ) ) |
167 |
104 78 7 8 123 165 166
|
syl222anc |
|- ( ph -> ( Q ^ ( Q pCnt A ) ) || ( ( odZ ` P ) ` C ) ) |
168 |
|
odzphi |
|- ( ( P e. NN /\ C e. ZZ /\ ( C gcd P ) = 1 ) -> ( ( odZ ` P ) ` C ) || ( phi ` P ) ) |
169 |
18 9 75 168
|
syl3anc |
|- ( ph -> ( ( odZ ` P ) ` C ) || ( phi ` P ) ) |
170 |
|
phiprm |
|- ( P e. Prime -> ( phi ` P ) = ( P - 1 ) ) |
171 |
5 170
|
syl |
|- ( ph -> ( phi ` P ) = ( P - 1 ) ) |
172 |
169 171
|
breqtrd |
|- ( ph -> ( ( odZ ` P ) ` C ) || ( P - 1 ) ) |
173 |
16 78 85 167 172
|
dvdstrd |
|- ( ph -> ( Q ^ ( Q pCnt A ) ) || ( P - 1 ) ) |
174 |
|
pcdvdsb |
|- ( ( Q e. Prime /\ ( P - 1 ) e. ZZ /\ ( Q pCnt A ) e. NN0 ) -> ( ( Q pCnt A ) <_ ( Q pCnt ( P - 1 ) ) <-> ( Q ^ ( Q pCnt A ) ) || ( P - 1 ) ) ) |
175 |
7 85 14 174
|
syl3anc |
|- ( ph -> ( ( Q pCnt A ) <_ ( Q pCnt ( P - 1 ) ) <-> ( Q ^ ( Q pCnt A ) ) || ( P - 1 ) ) ) |
176 |
173 175
|
mpbird |
|- ( ph -> ( Q pCnt A ) <_ ( Q pCnt ( P - 1 ) ) ) |