| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pockthg.1 |  |-  ( ph -> A e. NN ) | 
						
							| 2 |  | pockthg.2 |  |-  ( ph -> B e. NN ) | 
						
							| 3 |  | pockthg.3 |  |-  ( ph -> B < A ) | 
						
							| 4 |  | pockthg.4 |  |-  ( ph -> N = ( ( A x. B ) + 1 ) ) | 
						
							| 5 |  | pockthlem.5 |  |-  ( ph -> P e. Prime ) | 
						
							| 6 |  | pockthlem.6 |  |-  ( ph -> P || N ) | 
						
							| 7 |  | pockthlem.7 |  |-  ( ph -> Q e. Prime ) | 
						
							| 8 |  | pockthlem.8 |  |-  ( ph -> ( Q pCnt A ) e. NN ) | 
						
							| 9 |  | pockthlem.9 |  |-  ( ph -> C e. ZZ ) | 
						
							| 10 |  | pockthlem.10 |  |-  ( ph -> ( ( C ^ ( N - 1 ) ) mod N ) = 1 ) | 
						
							| 11 |  | pockthlem.11 |  |-  ( ph -> ( ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) gcd N ) = 1 ) | 
						
							| 12 |  | prmnn |  |-  ( Q e. Prime -> Q e. NN ) | 
						
							| 13 | 7 12 | syl |  |-  ( ph -> Q e. NN ) | 
						
							| 14 | 8 | nnnn0d |  |-  ( ph -> ( Q pCnt A ) e. NN0 ) | 
						
							| 15 | 13 14 | nnexpcld |  |-  ( ph -> ( Q ^ ( Q pCnt A ) ) e. NN ) | 
						
							| 16 | 15 | nnzd |  |-  ( ph -> ( Q ^ ( Q pCnt A ) ) e. ZZ ) | 
						
							| 17 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 18 | 5 17 | syl |  |-  ( ph -> P e. NN ) | 
						
							| 19 | 18 | nnzd |  |-  ( ph -> P e. ZZ ) | 
						
							| 20 |  | gcddvds |  |-  ( ( C e. ZZ /\ P e. ZZ ) -> ( ( C gcd P ) || C /\ ( C gcd P ) || P ) ) | 
						
							| 21 | 9 19 20 | syl2anc |  |-  ( ph -> ( ( C gcd P ) || C /\ ( C gcd P ) || P ) ) | 
						
							| 22 | 21 | simpld |  |-  ( ph -> ( C gcd P ) || C ) | 
						
							| 23 | 9 19 | gcdcld |  |-  ( ph -> ( C gcd P ) e. NN0 ) | 
						
							| 24 | 23 | nn0zd |  |-  ( ph -> ( C gcd P ) e. ZZ ) | 
						
							| 25 | 1 2 | nnmulcld |  |-  ( ph -> ( A x. B ) e. NN ) | 
						
							| 26 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 27 | 25 26 | eleqtrdi |  |-  ( ph -> ( A x. B ) e. ( ZZ>= ` 1 ) ) | 
						
							| 28 |  | eluzp1p1 |  |-  ( ( A x. B ) e. ( ZZ>= ` 1 ) -> ( ( A x. B ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ph -> ( ( A x. B ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) | 
						
							| 30 | 4 29 | eqeltrd |  |-  ( ph -> N e. ( ZZ>= ` ( 1 + 1 ) ) ) | 
						
							| 31 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 32 | 31 | fveq2i |  |-  ( ZZ>= ` 2 ) = ( ZZ>= ` ( 1 + 1 ) ) | 
						
							| 33 | 30 32 | eleqtrrdi |  |-  ( ph -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 34 |  | eluz2b2 |  |-  ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ 1 < N ) ) | 
						
							| 35 | 33 34 | sylib |  |-  ( ph -> ( N e. NN /\ 1 < N ) ) | 
						
							| 36 | 35 | simpld |  |-  ( ph -> N e. NN ) | 
						
							| 37 | 36 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 38 | 21 | simprd |  |-  ( ph -> ( C gcd P ) || P ) | 
						
							| 39 | 24 19 37 38 6 | dvdstrd |  |-  ( ph -> ( C gcd P ) || N ) | 
						
							| 40 | 36 | nnne0d |  |-  ( ph -> N =/= 0 ) | 
						
							| 41 |  | simpr |  |-  ( ( C = 0 /\ N = 0 ) -> N = 0 ) | 
						
							| 42 | 41 | necon3ai |  |-  ( N =/= 0 -> -. ( C = 0 /\ N = 0 ) ) | 
						
							| 43 | 40 42 | syl |  |-  ( ph -> -. ( C = 0 /\ N = 0 ) ) | 
						
							| 44 |  | dvdslegcd |  |-  ( ( ( ( C gcd P ) e. ZZ /\ C e. ZZ /\ N e. ZZ ) /\ -. ( C = 0 /\ N = 0 ) ) -> ( ( ( C gcd P ) || C /\ ( C gcd P ) || N ) -> ( C gcd P ) <_ ( C gcd N ) ) ) | 
						
							| 45 | 24 9 37 43 44 | syl31anc |  |-  ( ph -> ( ( ( C gcd P ) || C /\ ( C gcd P ) || N ) -> ( C gcd P ) <_ ( C gcd N ) ) ) | 
						
							| 46 | 22 39 45 | mp2and |  |-  ( ph -> ( C gcd P ) <_ ( C gcd N ) ) | 
						
							| 47 | 10 | oveq1d |  |-  ( ph -> ( ( ( C ^ ( N - 1 ) ) mod N ) gcd N ) = ( 1 gcd N ) ) | 
						
							| 48 |  | 1z |  |-  1 e. ZZ | 
						
							| 49 |  | eluzp1m1 |  |-  ( ( 1 e. ZZ /\ N e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 50 | 48 30 49 | sylancr |  |-  ( ph -> ( N - 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 51 | 50 26 | eleqtrrdi |  |-  ( ph -> ( N - 1 ) e. NN ) | 
						
							| 52 | 51 | nnnn0d |  |-  ( ph -> ( N - 1 ) e. NN0 ) | 
						
							| 53 |  | zexpcl |  |-  ( ( C e. ZZ /\ ( N - 1 ) e. NN0 ) -> ( C ^ ( N - 1 ) ) e. ZZ ) | 
						
							| 54 | 9 52 53 | syl2anc |  |-  ( ph -> ( C ^ ( N - 1 ) ) e. ZZ ) | 
						
							| 55 |  | modgcd |  |-  ( ( ( C ^ ( N - 1 ) ) e. ZZ /\ N e. NN ) -> ( ( ( C ^ ( N - 1 ) ) mod N ) gcd N ) = ( ( C ^ ( N - 1 ) ) gcd N ) ) | 
						
							| 56 | 54 36 55 | syl2anc |  |-  ( ph -> ( ( ( C ^ ( N - 1 ) ) mod N ) gcd N ) = ( ( C ^ ( N - 1 ) ) gcd N ) ) | 
						
							| 57 |  | gcdcom |  |-  ( ( 1 e. ZZ /\ N e. ZZ ) -> ( 1 gcd N ) = ( N gcd 1 ) ) | 
						
							| 58 | 48 37 57 | sylancr |  |-  ( ph -> ( 1 gcd N ) = ( N gcd 1 ) ) | 
						
							| 59 |  | gcd1 |  |-  ( N e. ZZ -> ( N gcd 1 ) = 1 ) | 
						
							| 60 | 37 59 | syl |  |-  ( ph -> ( N gcd 1 ) = 1 ) | 
						
							| 61 | 58 60 | eqtrd |  |-  ( ph -> ( 1 gcd N ) = 1 ) | 
						
							| 62 | 47 56 61 | 3eqtr3d |  |-  ( ph -> ( ( C ^ ( N - 1 ) ) gcd N ) = 1 ) | 
						
							| 63 |  | rpexp |  |-  ( ( C e. ZZ /\ N e. ZZ /\ ( N - 1 ) e. NN ) -> ( ( ( C ^ ( N - 1 ) ) gcd N ) = 1 <-> ( C gcd N ) = 1 ) ) | 
						
							| 64 | 9 37 51 63 | syl3anc |  |-  ( ph -> ( ( ( C ^ ( N - 1 ) ) gcd N ) = 1 <-> ( C gcd N ) = 1 ) ) | 
						
							| 65 | 62 64 | mpbid |  |-  ( ph -> ( C gcd N ) = 1 ) | 
						
							| 66 | 46 65 | breqtrd |  |-  ( ph -> ( C gcd P ) <_ 1 ) | 
						
							| 67 | 18 | nnne0d |  |-  ( ph -> P =/= 0 ) | 
						
							| 68 |  | simpr |  |-  ( ( C = 0 /\ P = 0 ) -> P = 0 ) | 
						
							| 69 | 68 | necon3ai |  |-  ( P =/= 0 -> -. ( C = 0 /\ P = 0 ) ) | 
						
							| 70 | 67 69 | syl |  |-  ( ph -> -. ( C = 0 /\ P = 0 ) ) | 
						
							| 71 |  | gcdn0cl |  |-  ( ( ( C e. ZZ /\ P e. ZZ ) /\ -. ( C = 0 /\ P = 0 ) ) -> ( C gcd P ) e. NN ) | 
						
							| 72 | 9 19 70 71 | syl21anc |  |-  ( ph -> ( C gcd P ) e. NN ) | 
						
							| 73 |  | nnle1eq1 |  |-  ( ( C gcd P ) e. NN -> ( ( C gcd P ) <_ 1 <-> ( C gcd P ) = 1 ) ) | 
						
							| 74 | 72 73 | syl |  |-  ( ph -> ( ( C gcd P ) <_ 1 <-> ( C gcd P ) = 1 ) ) | 
						
							| 75 | 66 74 | mpbid |  |-  ( ph -> ( C gcd P ) = 1 ) | 
						
							| 76 |  | odzcl |  |-  ( ( P e. NN /\ C e. ZZ /\ ( C gcd P ) = 1 ) -> ( ( odZ ` P ) ` C ) e. NN ) | 
						
							| 77 | 18 9 75 76 | syl3anc |  |-  ( ph -> ( ( odZ ` P ) ` C ) e. NN ) | 
						
							| 78 | 77 | nnzd |  |-  ( ph -> ( ( odZ ` P ) ` C ) e. ZZ ) | 
						
							| 79 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 80 | 5 79 | syl |  |-  ( ph -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 81 | 80 32 | eleqtrdi |  |-  ( ph -> P e. ( ZZ>= ` ( 1 + 1 ) ) ) | 
						
							| 82 |  | eluzp1m1 |  |-  ( ( 1 e. ZZ /\ P e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( P - 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 83 | 48 81 82 | sylancr |  |-  ( ph -> ( P - 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 84 | 83 26 | eleqtrrdi |  |-  ( ph -> ( P - 1 ) e. NN ) | 
						
							| 85 | 84 | nnzd |  |-  ( ph -> ( P - 1 ) e. ZZ ) | 
						
							| 86 | 1 | nnzd |  |-  ( ph -> A e. ZZ ) | 
						
							| 87 | 51 | nnzd |  |-  ( ph -> ( N - 1 ) e. ZZ ) | 
						
							| 88 |  | pcdvds |  |-  ( ( Q e. Prime /\ A e. NN ) -> ( Q ^ ( Q pCnt A ) ) || A ) | 
						
							| 89 | 7 1 88 | syl2anc |  |-  ( ph -> ( Q ^ ( Q pCnt A ) ) || A ) | 
						
							| 90 | 2 | nnzd |  |-  ( ph -> B e. ZZ ) | 
						
							| 91 |  | dvdsmul1 |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> A || ( A x. B ) ) | 
						
							| 92 | 86 90 91 | syl2anc |  |-  ( ph -> A || ( A x. B ) ) | 
						
							| 93 | 4 | oveq1d |  |-  ( ph -> ( N - 1 ) = ( ( ( A x. B ) + 1 ) - 1 ) ) | 
						
							| 94 | 25 | nncnd |  |-  ( ph -> ( A x. B ) e. CC ) | 
						
							| 95 |  | ax-1cn |  |-  1 e. CC | 
						
							| 96 |  | pncan |  |-  ( ( ( A x. B ) e. CC /\ 1 e. CC ) -> ( ( ( A x. B ) + 1 ) - 1 ) = ( A x. B ) ) | 
						
							| 97 | 94 95 96 | sylancl |  |-  ( ph -> ( ( ( A x. B ) + 1 ) - 1 ) = ( A x. B ) ) | 
						
							| 98 | 93 97 | eqtrd |  |-  ( ph -> ( N - 1 ) = ( A x. B ) ) | 
						
							| 99 | 92 98 | breqtrrd |  |-  ( ph -> A || ( N - 1 ) ) | 
						
							| 100 | 16 86 87 89 99 | dvdstrd |  |-  ( ph -> ( Q ^ ( Q pCnt A ) ) || ( N - 1 ) ) | 
						
							| 101 | 15 | nnne0d |  |-  ( ph -> ( Q ^ ( Q pCnt A ) ) =/= 0 ) | 
						
							| 102 |  | dvdsval2 |  |-  ( ( ( Q ^ ( Q pCnt A ) ) e. ZZ /\ ( Q ^ ( Q pCnt A ) ) =/= 0 /\ ( N - 1 ) e. ZZ ) -> ( ( Q ^ ( Q pCnt A ) ) || ( N - 1 ) <-> ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) e. ZZ ) ) | 
						
							| 103 | 16 101 87 102 | syl3anc |  |-  ( ph -> ( ( Q ^ ( Q pCnt A ) ) || ( N - 1 ) <-> ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) e. ZZ ) ) | 
						
							| 104 | 100 103 | mpbid |  |-  ( ph -> ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) e. ZZ ) | 
						
							| 105 |  | peano2zm |  |-  ( ( C ^ ( N - 1 ) ) e. ZZ -> ( ( C ^ ( N - 1 ) ) - 1 ) e. ZZ ) | 
						
							| 106 | 54 105 | syl |  |-  ( ph -> ( ( C ^ ( N - 1 ) ) - 1 ) e. ZZ ) | 
						
							| 107 | 36 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 108 | 35 | simprd |  |-  ( ph -> 1 < N ) | 
						
							| 109 |  | 1mod |  |-  ( ( N e. RR /\ 1 < N ) -> ( 1 mod N ) = 1 ) | 
						
							| 110 | 107 108 109 | syl2anc |  |-  ( ph -> ( 1 mod N ) = 1 ) | 
						
							| 111 | 10 110 | eqtr4d |  |-  ( ph -> ( ( C ^ ( N - 1 ) ) mod N ) = ( 1 mod N ) ) | 
						
							| 112 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 113 |  | moddvds |  |-  ( ( N e. NN /\ ( C ^ ( N - 1 ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( C ^ ( N - 1 ) ) mod N ) = ( 1 mod N ) <-> N || ( ( C ^ ( N - 1 ) ) - 1 ) ) ) | 
						
							| 114 | 36 54 112 113 | syl3anc |  |-  ( ph -> ( ( ( C ^ ( N - 1 ) ) mod N ) = ( 1 mod N ) <-> N || ( ( C ^ ( N - 1 ) ) - 1 ) ) ) | 
						
							| 115 | 111 114 | mpbid |  |-  ( ph -> N || ( ( C ^ ( N - 1 ) ) - 1 ) ) | 
						
							| 116 | 19 37 106 6 115 | dvdstrd |  |-  ( ph -> P || ( ( C ^ ( N - 1 ) ) - 1 ) ) | 
						
							| 117 |  | odzdvds |  |-  ( ( ( P e. NN /\ C e. ZZ /\ ( C gcd P ) = 1 ) /\ ( N - 1 ) e. NN0 ) -> ( P || ( ( C ^ ( N - 1 ) ) - 1 ) <-> ( ( odZ ` P ) ` C ) || ( N - 1 ) ) ) | 
						
							| 118 | 18 9 75 52 117 | syl31anc |  |-  ( ph -> ( P || ( ( C ^ ( N - 1 ) ) - 1 ) <-> ( ( odZ ` P ) ` C ) || ( N - 1 ) ) ) | 
						
							| 119 | 116 118 | mpbid |  |-  ( ph -> ( ( odZ ` P ) ` C ) || ( N - 1 ) ) | 
						
							| 120 | 51 | nncnd |  |-  ( ph -> ( N - 1 ) e. CC ) | 
						
							| 121 | 15 | nncnd |  |-  ( ph -> ( Q ^ ( Q pCnt A ) ) e. CC ) | 
						
							| 122 | 120 121 101 | divcan1d |  |-  ( ph -> ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( Q pCnt A ) ) ) = ( N - 1 ) ) | 
						
							| 123 | 119 122 | breqtrrd |  |-  ( ph -> ( ( odZ ` P ) ` C ) || ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( Q pCnt A ) ) ) ) | 
						
							| 124 |  | nprmdvds1 |  |-  ( P e. Prime -> -. P || 1 ) | 
						
							| 125 | 5 124 | syl |  |-  ( ph -> -. P || 1 ) | 
						
							| 126 | 13 | nnzd |  |-  ( ph -> Q e. ZZ ) | 
						
							| 127 |  | iddvdsexp |  |-  ( ( Q e. ZZ /\ ( Q pCnt A ) e. NN ) -> Q || ( Q ^ ( Q pCnt A ) ) ) | 
						
							| 128 | 126 8 127 | syl2anc |  |-  ( ph -> Q || ( Q ^ ( Q pCnt A ) ) ) | 
						
							| 129 | 126 16 87 128 100 | dvdstrd |  |-  ( ph -> Q || ( N - 1 ) ) | 
						
							| 130 | 13 | nnne0d |  |-  ( ph -> Q =/= 0 ) | 
						
							| 131 |  | dvdsval2 |  |-  ( ( Q e. ZZ /\ Q =/= 0 /\ ( N - 1 ) e. ZZ ) -> ( Q || ( N - 1 ) <-> ( ( N - 1 ) / Q ) e. ZZ ) ) | 
						
							| 132 | 126 130 87 131 | syl3anc |  |-  ( ph -> ( Q || ( N - 1 ) <-> ( ( N - 1 ) / Q ) e. ZZ ) ) | 
						
							| 133 | 129 132 | mpbid |  |-  ( ph -> ( ( N - 1 ) / Q ) e. ZZ ) | 
						
							| 134 | 52 | nn0ge0d |  |-  ( ph -> 0 <_ ( N - 1 ) ) | 
						
							| 135 | 51 | nnred |  |-  ( ph -> ( N - 1 ) e. RR ) | 
						
							| 136 | 13 | nnred |  |-  ( ph -> Q e. RR ) | 
						
							| 137 | 13 | nngt0d |  |-  ( ph -> 0 < Q ) | 
						
							| 138 |  | ge0div |  |-  ( ( ( N - 1 ) e. RR /\ Q e. RR /\ 0 < Q ) -> ( 0 <_ ( N - 1 ) <-> 0 <_ ( ( N - 1 ) / Q ) ) ) | 
						
							| 139 | 135 136 137 138 | syl3anc |  |-  ( ph -> ( 0 <_ ( N - 1 ) <-> 0 <_ ( ( N - 1 ) / Q ) ) ) | 
						
							| 140 | 134 139 | mpbid |  |-  ( ph -> 0 <_ ( ( N - 1 ) / Q ) ) | 
						
							| 141 |  | elnn0z |  |-  ( ( ( N - 1 ) / Q ) e. NN0 <-> ( ( ( N - 1 ) / Q ) e. ZZ /\ 0 <_ ( ( N - 1 ) / Q ) ) ) | 
						
							| 142 | 133 140 141 | sylanbrc |  |-  ( ph -> ( ( N - 1 ) / Q ) e. NN0 ) | 
						
							| 143 |  | zexpcl |  |-  ( ( C e. ZZ /\ ( ( N - 1 ) / Q ) e. NN0 ) -> ( C ^ ( ( N - 1 ) / Q ) ) e. ZZ ) | 
						
							| 144 | 9 142 143 | syl2anc |  |-  ( ph -> ( C ^ ( ( N - 1 ) / Q ) ) e. ZZ ) | 
						
							| 145 |  | peano2zm |  |-  ( ( C ^ ( ( N - 1 ) / Q ) ) e. ZZ -> ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) e. ZZ ) | 
						
							| 146 | 144 145 | syl |  |-  ( ph -> ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) e. ZZ ) | 
						
							| 147 |  | dvdsgcd |  |-  ( ( P e. ZZ /\ ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) e. ZZ /\ N e. ZZ ) -> ( ( P || ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) /\ P || N ) -> P || ( ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) gcd N ) ) ) | 
						
							| 148 | 19 146 37 147 | syl3anc |  |-  ( ph -> ( ( P || ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) /\ P || N ) -> P || ( ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) gcd N ) ) ) | 
						
							| 149 | 6 148 | mpan2d |  |-  ( ph -> ( P || ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) -> P || ( ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) gcd N ) ) ) | 
						
							| 150 |  | odzdvds |  |-  ( ( ( P e. NN /\ C e. ZZ /\ ( C gcd P ) = 1 ) /\ ( ( N - 1 ) / Q ) e. NN0 ) -> ( P || ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) <-> ( ( odZ ` P ) ` C ) || ( ( N - 1 ) / Q ) ) ) | 
						
							| 151 | 18 9 75 142 150 | syl31anc |  |-  ( ph -> ( P || ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) <-> ( ( odZ ` P ) ` C ) || ( ( N - 1 ) / Q ) ) ) | 
						
							| 152 | 13 | nncnd |  |-  ( ph -> Q e. CC ) | 
						
							| 153 | 8 | nnzd |  |-  ( ph -> ( Q pCnt A ) e. ZZ ) | 
						
							| 154 | 152 130 153 | expm1d |  |-  ( ph -> ( Q ^ ( ( Q pCnt A ) - 1 ) ) = ( ( Q ^ ( Q pCnt A ) ) / Q ) ) | 
						
							| 155 | 154 | oveq2d |  |-  ( ph -> ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( ( Q pCnt A ) - 1 ) ) ) = ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( ( Q ^ ( Q pCnt A ) ) / Q ) ) ) | 
						
							| 156 | 135 15 | nndivred |  |-  ( ph -> ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) e. RR ) | 
						
							| 157 | 156 | recnd |  |-  ( ph -> ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) e. CC ) | 
						
							| 158 | 157 121 152 130 | divassd |  |-  ( ph -> ( ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( Q pCnt A ) ) ) / Q ) = ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( ( Q ^ ( Q pCnt A ) ) / Q ) ) ) | 
						
							| 159 | 122 | oveq1d |  |-  ( ph -> ( ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( Q pCnt A ) ) ) / Q ) = ( ( N - 1 ) / Q ) ) | 
						
							| 160 | 155 158 159 | 3eqtr2d |  |-  ( ph -> ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( ( Q pCnt A ) - 1 ) ) ) = ( ( N - 1 ) / Q ) ) | 
						
							| 161 | 160 | breq2d |  |-  ( ph -> ( ( ( odZ ` P ) ` C ) || ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( ( Q pCnt A ) - 1 ) ) ) <-> ( ( odZ ` P ) ` C ) || ( ( N - 1 ) / Q ) ) ) | 
						
							| 162 | 151 161 | bitr4d |  |-  ( ph -> ( P || ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) <-> ( ( odZ ` P ) ` C ) || ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( ( Q pCnt A ) - 1 ) ) ) ) ) | 
						
							| 163 | 11 | breq2d |  |-  ( ph -> ( P || ( ( ( C ^ ( ( N - 1 ) / Q ) ) - 1 ) gcd N ) <-> P || 1 ) ) | 
						
							| 164 | 149 162 163 | 3imtr3d |  |-  ( ph -> ( ( ( odZ ` P ) ` C ) || ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( ( Q pCnt A ) - 1 ) ) ) -> P || 1 ) ) | 
						
							| 165 | 125 164 | mtod |  |-  ( ph -> -. ( ( odZ ` P ) ` C ) || ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( ( Q pCnt A ) - 1 ) ) ) ) | 
						
							| 166 |  | prmpwdvds |  |-  ( ( ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) e. ZZ /\ ( ( odZ ` P ) ` C ) e. ZZ ) /\ ( Q e. Prime /\ ( Q pCnt A ) e. NN ) /\ ( ( ( odZ ` P ) ` C ) || ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( Q pCnt A ) ) ) /\ -. ( ( odZ ` P ) ` C ) || ( ( ( N - 1 ) / ( Q ^ ( Q pCnt A ) ) ) x. ( Q ^ ( ( Q pCnt A ) - 1 ) ) ) ) ) -> ( Q ^ ( Q pCnt A ) ) || ( ( odZ ` P ) ` C ) ) | 
						
							| 167 | 104 78 7 8 123 165 166 | syl222anc |  |-  ( ph -> ( Q ^ ( Q pCnt A ) ) || ( ( odZ ` P ) ` C ) ) | 
						
							| 168 |  | odzphi |  |-  ( ( P e. NN /\ C e. ZZ /\ ( C gcd P ) = 1 ) -> ( ( odZ ` P ) ` C ) || ( phi ` P ) ) | 
						
							| 169 | 18 9 75 168 | syl3anc |  |-  ( ph -> ( ( odZ ` P ) ` C ) || ( phi ` P ) ) | 
						
							| 170 |  | phiprm |  |-  ( P e. Prime -> ( phi ` P ) = ( P - 1 ) ) | 
						
							| 171 | 5 170 | syl |  |-  ( ph -> ( phi ` P ) = ( P - 1 ) ) | 
						
							| 172 | 169 171 | breqtrd |  |-  ( ph -> ( ( odZ ` P ) ` C ) || ( P - 1 ) ) | 
						
							| 173 | 16 78 85 167 172 | dvdstrd |  |-  ( ph -> ( Q ^ ( Q pCnt A ) ) || ( P - 1 ) ) | 
						
							| 174 |  | pcdvdsb |  |-  ( ( Q e. Prime /\ ( P - 1 ) e. ZZ /\ ( Q pCnt A ) e. NN0 ) -> ( ( Q pCnt A ) <_ ( Q pCnt ( P - 1 ) ) <-> ( Q ^ ( Q pCnt A ) ) || ( P - 1 ) ) ) | 
						
							| 175 | 7 85 14 174 | syl3anc |  |-  ( ph -> ( ( Q pCnt A ) <_ ( Q pCnt ( P - 1 ) ) <-> ( Q ^ ( Q pCnt A ) ) || ( P - 1 ) ) ) | 
						
							| 176 | 173 175 | mpbird |  |-  ( ph -> ( Q pCnt A ) <_ ( Q pCnt ( P - 1 ) ) ) |