| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-po |
|- ( R Po A <-> A. x e. A A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
| 2 |
1
|
biimpi |
|- ( R Po A -> A. x e. A A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
| 3 |
|
id |
|- ( x = B -> x = B ) |
| 4 |
3 3
|
breq12d |
|- ( x = B -> ( x R x <-> B R B ) ) |
| 5 |
4
|
notbid |
|- ( x = B -> ( -. x R x <-> -. B R B ) ) |
| 6 |
|
breq1 |
|- ( x = B -> ( x R y <-> B R y ) ) |
| 7 |
6
|
anbi1d |
|- ( x = B -> ( ( x R y /\ y R z ) <-> ( B R y /\ y R z ) ) ) |
| 8 |
|
breq1 |
|- ( x = B -> ( x R z <-> B R z ) ) |
| 9 |
7 8
|
imbi12d |
|- ( x = B -> ( ( ( x R y /\ y R z ) -> x R z ) <-> ( ( B R y /\ y R z ) -> B R z ) ) ) |
| 10 |
5 9
|
anbi12d |
|- ( x = B -> ( ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) <-> ( -. B R B /\ ( ( B R y /\ y R z ) -> B R z ) ) ) ) |
| 11 |
|
breq2 |
|- ( y = C -> ( B R y <-> B R C ) ) |
| 12 |
|
breq1 |
|- ( y = C -> ( y R z <-> C R z ) ) |
| 13 |
11 12
|
anbi12d |
|- ( y = C -> ( ( B R y /\ y R z ) <-> ( B R C /\ C R z ) ) ) |
| 14 |
13
|
imbi1d |
|- ( y = C -> ( ( ( B R y /\ y R z ) -> B R z ) <-> ( ( B R C /\ C R z ) -> B R z ) ) ) |
| 15 |
14
|
anbi2d |
|- ( y = C -> ( ( -. B R B /\ ( ( B R y /\ y R z ) -> B R z ) ) <-> ( -. B R B /\ ( ( B R C /\ C R z ) -> B R z ) ) ) ) |
| 16 |
|
breq2 |
|- ( z = D -> ( C R z <-> C R D ) ) |
| 17 |
16
|
anbi2d |
|- ( z = D -> ( ( B R C /\ C R z ) <-> ( B R C /\ C R D ) ) ) |
| 18 |
|
breq2 |
|- ( z = D -> ( B R z <-> B R D ) ) |
| 19 |
17 18
|
imbi12d |
|- ( z = D -> ( ( ( B R C /\ C R z ) -> B R z ) <-> ( ( B R C /\ C R D ) -> B R D ) ) ) |
| 20 |
19
|
anbi2d |
|- ( z = D -> ( ( -. B R B /\ ( ( B R C /\ C R z ) -> B R z ) ) <-> ( -. B R B /\ ( ( B R C /\ C R D ) -> B R D ) ) ) ) |
| 21 |
10 15 20
|
rspc3v |
|- ( ( B e. A /\ C e. A /\ D e. A ) -> ( A. x e. A A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) -> ( -. B R B /\ ( ( B R C /\ C R D ) -> B R D ) ) ) ) |
| 22 |
2 21
|
syl5com |
|- ( R Po A -> ( ( B e. A /\ C e. A /\ D e. A ) -> ( -. B R B /\ ( ( B R C /\ C R D ) -> B R D ) ) ) ) |