Metamath Proof Explorer


Theorem poeq12d

Description: Equality deduction for partial orderings. (Contributed by Matthew House, 10-Sep-2025)

Ref Expression
Hypotheses poeq12d.1
|- ( ph -> R = S )
poeq12d.2
|- ( ph -> A = B )
Assertion poeq12d
|- ( ph -> ( R Po A <-> S Po B ) )

Proof

Step Hyp Ref Expression
1 poeq12d.1
 |-  ( ph -> R = S )
2 poeq12d.2
 |-  ( ph -> A = B )
3 poeq1
 |-  ( R = S -> ( R Po A <-> S Po A ) )
4 poeq2
 |-  ( A = B -> ( S Po A <-> S Po B ) )
5 3 4 sylan9bb
 |-  ( ( R = S /\ A = B ) -> ( R Po A <-> S Po B ) )
6 1 2 5 syl2anc
 |-  ( ph -> ( R Po A <-> S Po B ) )