Metamath Proof Explorer


Theorem poirr

Description: A partial order is irreflexive. (Contributed by NM, 27-Mar-1997)

Ref Expression
Assertion poirr
|- ( ( R Po A /\ B e. A ) -> -. B R B )

Proof

Step Hyp Ref Expression
1 df-3an
 |-  ( ( B e. A /\ B e. A /\ B e. A ) <-> ( ( B e. A /\ B e. A ) /\ B e. A ) )
2 anabs1
 |-  ( ( ( B e. A /\ B e. A ) /\ B e. A ) <-> ( B e. A /\ B e. A ) )
3 anidm
 |-  ( ( B e. A /\ B e. A ) <-> B e. A )
4 1 2 3 3bitrri
 |-  ( B e. A <-> ( B e. A /\ B e. A /\ B e. A ) )
5 pocl
 |-  ( R Po A -> ( ( B e. A /\ B e. A /\ B e. A ) -> ( -. B R B /\ ( ( B R B /\ B R B ) -> B R B ) ) ) )
6 5 imp
 |-  ( ( R Po A /\ ( B e. A /\ B e. A /\ B e. A ) ) -> ( -. B R B /\ ( ( B R B /\ B R B ) -> B R B ) ) )
7 6 simpld
 |-  ( ( R Po A /\ ( B e. A /\ B e. A /\ B e. A ) ) -> -. B R B )
8 4 7 sylan2b
 |-  ( ( R Po A /\ B e. A ) -> -. B R B )