Step |
Hyp |
Ref |
Expression |
1 |
|
relres |
|- Rel ( _I |` A ) |
2 |
|
relin2 |
|- ( Rel ( _I |` A ) -> Rel ( R i^i ( _I |` A ) ) ) |
3 |
1 2
|
mp1i |
|- ( R Po A -> Rel ( R i^i ( _I |` A ) ) ) |
4 |
|
df-br |
|- ( x ( R i^i ( _I |` A ) ) y <-> <. x , y >. e. ( R i^i ( _I |` A ) ) ) |
5 |
|
brin |
|- ( x ( R i^i ( _I |` A ) ) y <-> ( x R y /\ x ( _I |` A ) y ) ) |
6 |
4 5
|
bitr3i |
|- ( <. x , y >. e. ( R i^i ( _I |` A ) ) <-> ( x R y /\ x ( _I |` A ) y ) ) |
7 |
|
vex |
|- y e. _V |
8 |
7
|
brresi |
|- ( x ( _I |` A ) y <-> ( x e. A /\ x _I y ) ) |
9 |
|
poirr |
|- ( ( R Po A /\ x e. A ) -> -. x R x ) |
10 |
7
|
ideq |
|- ( x _I y <-> x = y ) |
11 |
|
breq2 |
|- ( x = y -> ( x R x <-> x R y ) ) |
12 |
10 11
|
sylbi |
|- ( x _I y -> ( x R x <-> x R y ) ) |
13 |
12
|
notbid |
|- ( x _I y -> ( -. x R x <-> -. x R y ) ) |
14 |
9 13
|
syl5ibcom |
|- ( ( R Po A /\ x e. A ) -> ( x _I y -> -. x R y ) ) |
15 |
14
|
expimpd |
|- ( R Po A -> ( ( x e. A /\ x _I y ) -> -. x R y ) ) |
16 |
8 15
|
syl5bi |
|- ( R Po A -> ( x ( _I |` A ) y -> -. x R y ) ) |
17 |
16
|
con2d |
|- ( R Po A -> ( x R y -> -. x ( _I |` A ) y ) ) |
18 |
|
imnan |
|- ( ( x R y -> -. x ( _I |` A ) y ) <-> -. ( x R y /\ x ( _I |` A ) y ) ) |
19 |
17 18
|
sylib |
|- ( R Po A -> -. ( x R y /\ x ( _I |` A ) y ) ) |
20 |
19
|
pm2.21d |
|- ( R Po A -> ( ( x R y /\ x ( _I |` A ) y ) -> <. x , y >. e. (/) ) ) |
21 |
6 20
|
syl5bi |
|- ( R Po A -> ( <. x , y >. e. ( R i^i ( _I |` A ) ) -> <. x , y >. e. (/) ) ) |
22 |
3 21
|
relssdv |
|- ( R Po A -> ( R i^i ( _I |` A ) ) C_ (/) ) |
23 |
|
ss0 |
|- ( ( R i^i ( _I |` A ) ) C_ (/) -> ( R i^i ( _I |` A ) ) = (/) ) |
24 |
22 23
|
syl |
|- ( R Po A -> ( R i^i ( _I |` A ) ) = (/) ) |