Step |
Hyp |
Ref |
Expression |
1 |
|
paddun.a |
|- A = ( Atoms ` K ) |
2 |
|
paddun.p |
|- .+ = ( +P ` K ) |
3 |
|
paddun.o |
|- ._|_ = ( _|_P ` K ) |
4 |
1 2 3
|
paddunN |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ._|_ ` ( S .+ T ) ) = ( ._|_ ` ( S u. T ) ) ) |
5 |
|
simp1 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> K e. HL ) |
6 |
|
unss |
|- ( ( S C_ A /\ T C_ A ) <-> ( S u. T ) C_ A ) |
7 |
6
|
biimpi |
|- ( ( S C_ A /\ T C_ A ) -> ( S u. T ) C_ A ) |
8 |
7
|
3adant1 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( S u. T ) C_ A ) |
9 |
|
eqid |
|- ( lub ` K ) = ( lub ` K ) |
10 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
11 |
|
eqid |
|- ( pmap ` K ) = ( pmap ` K ) |
12 |
9 10 1 11 3
|
polval2N |
|- ( ( K e. HL /\ ( S u. T ) C_ A ) -> ( ._|_ ` ( S u. T ) ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) ) ) |
13 |
5 8 12
|
syl2anc |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ._|_ ` ( S u. T ) ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) ) ) |
14 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
15 |
14
|
3ad2ant1 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> K e. OP ) |
16 |
|
hlclat |
|- ( K e. HL -> K e. CLat ) |
17 |
16
|
3ad2ant1 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> K e. CLat ) |
18 |
|
simp2 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> S C_ A ) |
19 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
20 |
19 1
|
atssbase |
|- A C_ ( Base ` K ) |
21 |
18 20
|
sstrdi |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> S C_ ( Base ` K ) ) |
22 |
19 9
|
clatlubcl |
|- ( ( K e. CLat /\ S C_ ( Base ` K ) ) -> ( ( lub ` K ) ` S ) e. ( Base ` K ) ) |
23 |
17 21 22
|
syl2anc |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( lub ` K ) ` S ) e. ( Base ` K ) ) |
24 |
19 10
|
opoccl |
|- ( ( K e. OP /\ ( ( lub ` K ) ` S ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) e. ( Base ` K ) ) |
25 |
15 23 24
|
syl2anc |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) e. ( Base ` K ) ) |
26 |
|
simp3 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> T C_ A ) |
27 |
26 20
|
sstrdi |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> T C_ ( Base ` K ) ) |
28 |
19 9
|
clatlubcl |
|- ( ( K e. CLat /\ T C_ ( Base ` K ) ) -> ( ( lub ` K ) ` T ) e. ( Base ` K ) ) |
29 |
17 27 28
|
syl2anc |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( lub ` K ) ` T ) e. ( Base ` K ) ) |
30 |
19 10
|
opoccl |
|- ( ( K e. OP /\ ( ( lub ` K ) ` T ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) e. ( Base ` K ) ) |
31 |
15 29 30
|
syl2anc |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) e. ( Base ` K ) ) |
32 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
33 |
19 32 1 11
|
pmapmeet |
|- ( ( K e. HL /\ ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) e. ( Base ` K ) /\ ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) e. ( Base ` K ) ) -> ( ( pmap ` K ) ` ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) = ( ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) i^i ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) ) |
34 |
5 25 31 33
|
syl3anc |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( pmap ` K ) ` ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) = ( ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) i^i ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) ) |
35 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
36 |
19 35 9
|
lubun |
|- ( ( K e. CLat /\ S C_ ( Base ` K ) /\ T C_ ( Base ` K ) ) -> ( ( lub ` K ) ` ( S u. T ) ) = ( ( ( lub ` K ) ` S ) ( join ` K ) ( ( lub ` K ) ` T ) ) ) |
37 |
17 21 27 36
|
syl3anc |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( lub ` K ) ` ( S u. T ) ) = ( ( ( lub ` K ) ` S ) ( join ` K ) ( ( lub ` K ) ` T ) ) ) |
38 |
37
|
fveq2d |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) = ( ( oc ` K ) ` ( ( ( lub ` K ) ` S ) ( join ` K ) ( ( lub ` K ) ` T ) ) ) ) |
39 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
40 |
39
|
3ad2ant1 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> K e. OL ) |
41 |
19 35 32 10
|
oldmj1 |
|- ( ( K e. OL /\ ( ( lub ` K ) ` S ) e. ( Base ` K ) /\ ( ( lub ` K ) ` T ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( ( lub ` K ) ` S ) ( join ` K ) ( ( lub ` K ) ` T ) ) ) = ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) |
42 |
40 23 29 41
|
syl3anc |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( oc ` K ) ` ( ( ( lub ` K ) ` S ) ( join ` K ) ( ( lub ` K ) ` T ) ) ) = ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) |
43 |
38 42
|
eqtrd |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) = ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) |
44 |
43
|
fveq2d |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) ) = ( ( pmap ` K ) ` ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) ) |
45 |
9 10 1 11 3
|
polval2N |
|- ( ( K e. HL /\ S C_ A ) -> ( ._|_ ` S ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) ) |
46 |
45
|
3adant3 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ._|_ ` S ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) ) |
47 |
9 10 1 11 3
|
polval2N |
|- ( ( K e. HL /\ T C_ A ) -> ( ._|_ ` T ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) |
48 |
47
|
3adant2 |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ._|_ ` T ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) |
49 |
46 48
|
ineq12d |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( ._|_ ` S ) i^i ( ._|_ ` T ) ) = ( ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) i^i ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) ) |
50 |
34 44 49
|
3eqtr4d |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) ) = ( ( ._|_ ` S ) i^i ( ._|_ ` T ) ) ) |
51 |
4 13 50
|
3eqtrd |
|- ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ._|_ ` ( S .+ T ) ) = ( ( ._|_ ` S ) i^i ( ._|_ ` T ) ) ) |