| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							paddun.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							paddun.p | 
							 |-  .+ = ( +P ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							paddun.o | 
							 |-  ._|_ = ( _|_P ` K )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							paddunN | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ._|_ ` ( S .+ T ) ) = ( ._|_ ` ( S u. T ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> K e. HL )  | 
						
						
							| 6 | 
							
								
							 | 
							unss | 
							 |-  ( ( S C_ A /\ T C_ A ) <-> ( S u. T ) C_ A )  | 
						
						
							| 7 | 
							
								6
							 | 
							biimpi | 
							 |-  ( ( S C_ A /\ T C_ A ) -> ( S u. T ) C_ A )  | 
						
						
							| 8 | 
							
								7
							 | 
							3adant1 | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( S u. T ) C_ A )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( lub ` K ) = ( lub ` K )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( oc ` K ) = ( oc ` K )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( pmap ` K ) = ( pmap ` K )  | 
						
						
							| 12 | 
							
								9 10 1 11 3
							 | 
							polval2N | 
							 |-  ( ( K e. HL /\ ( S u. T ) C_ A ) -> ( ._|_ ` ( S u. T ) ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) ) )  | 
						
						
							| 13 | 
							
								5 8 12
							 | 
							syl2anc | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ._|_ ` ( S u. T ) ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							hlop | 
							 |-  ( K e. HL -> K e. OP )  | 
						
						
							| 15 | 
							
								14
							 | 
							3ad2ant1 | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> K e. OP )  | 
						
						
							| 16 | 
							
								
							 | 
							hlclat | 
							 |-  ( K e. HL -> K e. CLat )  | 
						
						
							| 17 | 
							
								16
							 | 
							3ad2ant1 | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> K e. CLat )  | 
						
						
							| 18 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> S C_ A )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 20 | 
							
								19 1
							 | 
							atssbase | 
							 |-  A C_ ( Base ` K )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							sstrdi | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> S C_ ( Base ` K ) )  | 
						
						
							| 22 | 
							
								19 9
							 | 
							clatlubcl | 
							 |-  ( ( K e. CLat /\ S C_ ( Base ` K ) ) -> ( ( lub ` K ) ` S ) e. ( Base ` K ) )  | 
						
						
							| 23 | 
							
								17 21 22
							 | 
							syl2anc | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( lub ` K ) ` S ) e. ( Base ` K ) )  | 
						
						
							| 24 | 
							
								19 10
							 | 
							opoccl | 
							 |-  ( ( K e. OP /\ ( ( lub ` K ) ` S ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) e. ( Base ` K ) )  | 
						
						
							| 25 | 
							
								15 23 24
							 | 
							syl2anc | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) e. ( Base ` K ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> T C_ A )  | 
						
						
							| 27 | 
							
								26 20
							 | 
							sstrdi | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> T C_ ( Base ` K ) )  | 
						
						
							| 28 | 
							
								19 9
							 | 
							clatlubcl | 
							 |-  ( ( K e. CLat /\ T C_ ( Base ` K ) ) -> ( ( lub ` K ) ` T ) e. ( Base ` K ) )  | 
						
						
							| 29 | 
							
								17 27 28
							 | 
							syl2anc | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( lub ` K ) ` T ) e. ( Base ` K ) )  | 
						
						
							| 30 | 
							
								19 10
							 | 
							opoccl | 
							 |-  ( ( K e. OP /\ ( ( lub ` K ) ` T ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) e. ( Base ` K ) )  | 
						
						
							| 31 | 
							
								15 29 30
							 | 
							syl2anc | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) e. ( Base ` K ) )  | 
						
						
							| 32 | 
							
								
							 | 
							eqid | 
							 |-  ( meet ` K ) = ( meet ` K )  | 
						
						
							| 33 | 
							
								19 32 1 11
							 | 
							pmapmeet | 
							 |-  ( ( K e. HL /\ ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) e. ( Base ` K ) /\ ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) e. ( Base ` K ) ) -> ( ( pmap ` K ) ` ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) = ( ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) i^i ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) )  | 
						
						
							| 34 | 
							
								5 25 31 33
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( pmap ` K ) ` ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) = ( ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) i^i ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							eqid | 
							 |-  ( join ` K ) = ( join ` K )  | 
						
						
							| 36 | 
							
								19 35 9
							 | 
							lubun | 
							 |-  ( ( K e. CLat /\ S C_ ( Base ` K ) /\ T C_ ( Base ` K ) ) -> ( ( lub ` K ) ` ( S u. T ) ) = ( ( ( lub ` K ) ` S ) ( join ` K ) ( ( lub ` K ) ` T ) ) )  | 
						
						
							| 37 | 
							
								17 21 27 36
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( lub ` K ) ` ( S u. T ) ) = ( ( ( lub ` K ) ` S ) ( join ` K ) ( ( lub ` K ) ` T ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							fveq2d | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) = ( ( oc ` K ) ` ( ( ( lub ` K ) ` S ) ( join ` K ) ( ( lub ` K ) ` T ) ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							hlol | 
							 |-  ( K e. HL -> K e. OL )  | 
						
						
							| 40 | 
							
								39
							 | 
							3ad2ant1 | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> K e. OL )  | 
						
						
							| 41 | 
							
								19 35 32 10
							 | 
							oldmj1 | 
							 |-  ( ( K e. OL /\ ( ( lub ` K ) ` S ) e. ( Base ` K ) /\ ( ( lub ` K ) ` T ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( ( lub ` K ) ` S ) ( join ` K ) ( ( lub ` K ) ` T ) ) ) = ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) )  | 
						
						
							| 42 | 
							
								40 23 29 41
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( oc ` K ) ` ( ( ( lub ` K ) ` S ) ( join ` K ) ( ( lub ` K ) ` T ) ) ) = ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) )  | 
						
						
							| 43 | 
							
								38 42
							 | 
							eqtrd | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) = ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							fveq2d | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) ) = ( ( pmap ` K ) ` ( ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ( meet ` K ) ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) )  | 
						
						
							| 45 | 
							
								9 10 1 11 3
							 | 
							polval2N | 
							 |-  ( ( K e. HL /\ S C_ A ) -> ( ._|_ ` S ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							3adant3 | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ._|_ ` S ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) )  | 
						
						
							| 47 | 
							
								9 10 1 11 3
							 | 
							polval2N | 
							 |-  ( ( K e. HL /\ T C_ A ) -> ( ._|_ ` T ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							3adant2 | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ._|_ ` T ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) )  | 
						
						
							| 49 | 
							
								46 48
							 | 
							ineq12d | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( ._|_ ` S ) i^i ( ._|_ ` T ) ) = ( ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) i^i ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` T ) ) ) ) )  | 
						
						
							| 50 | 
							
								34 44 49
							 | 
							3eqtr4d | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` ( S u. T ) ) ) ) = ( ( ._|_ ` S ) i^i ( ._|_ ` T ) ) )  | 
						
						
							| 51 | 
							
								4 13 50
							 | 
							3eqtrd | 
							 |-  ( ( K e. HL /\ S C_ A /\ T C_ A ) -> ( ._|_ ` ( S .+ T ) ) = ( ( ._|_ ` S ) i^i ( ._|_ ` T ) ) )  |