| Step | Hyp | Ref | Expression | 
						
							| 1 |  | polid2.1 |  |-  A e. ~H | 
						
							| 2 |  | polid2.2 |  |-  B e. ~H | 
						
							| 3 |  | polid2.3 |  |-  C e. ~H | 
						
							| 4 |  | polid2.4 |  |-  D e. ~H | 
						
							| 5 |  | 4cn |  |-  4 e. CC | 
						
							| 6 | 1 2 | hicli |  |-  ( A .ih B ) e. CC | 
						
							| 7 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 8 |  | 2cn |  |-  2 e. CC | 
						
							| 9 | 3 4 | hicli |  |-  ( C .ih D ) e. CC | 
						
							| 10 | 6 9 | addcli |  |-  ( ( A .ih B ) + ( C .ih D ) ) e. CC | 
						
							| 11 | 6 9 | subcli |  |-  ( ( A .ih B ) - ( C .ih D ) ) e. CC | 
						
							| 12 | 8 10 11 | adddii |  |-  ( 2 x. ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) ) = ( ( 2 x. ( ( A .ih B ) + ( C .ih D ) ) ) + ( 2 x. ( ( A .ih B ) - ( C .ih D ) ) ) ) | 
						
							| 13 |  | ppncan |  |-  ( ( ( A .ih B ) e. CC /\ ( C .ih D ) e. CC /\ ( A .ih B ) e. CC ) -> ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) = ( ( A .ih B ) + ( A .ih B ) ) ) | 
						
							| 14 | 6 9 6 13 | mp3an |  |-  ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) = ( ( A .ih B ) + ( A .ih B ) ) | 
						
							| 15 | 6 | 2timesi |  |-  ( 2 x. ( A .ih B ) ) = ( ( A .ih B ) + ( A .ih B ) ) | 
						
							| 16 | 14 15 | eqtr4i |  |-  ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) = ( 2 x. ( A .ih B ) ) | 
						
							| 17 | 16 | oveq2i |  |-  ( 2 x. ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) ) = ( 2 x. ( 2 x. ( A .ih B ) ) ) | 
						
							| 18 | 8 8 6 | mulassi |  |-  ( ( 2 x. 2 ) x. ( A .ih B ) ) = ( 2 x. ( 2 x. ( A .ih B ) ) ) | 
						
							| 19 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 20 | 19 | oveq1i |  |-  ( ( 2 x. 2 ) x. ( A .ih B ) ) = ( 4 x. ( A .ih B ) ) | 
						
							| 21 | 17 18 20 | 3eqtr2ri |  |-  ( 4 x. ( A .ih B ) ) = ( 2 x. ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) ) | 
						
							| 22 | 1 4 | hicli |  |-  ( A .ih D ) e. CC | 
						
							| 23 | 3 2 | hicli |  |-  ( C .ih B ) e. CC | 
						
							| 24 | 22 23 | addcli |  |-  ( ( A .ih D ) + ( C .ih B ) ) e. CC | 
						
							| 25 | 24 10 10 | pnncani |  |-  ( ( ( ( A .ih D ) + ( C .ih B ) ) + ( ( A .ih B ) + ( C .ih D ) ) ) - ( ( ( A .ih D ) + ( C .ih B ) ) - ( ( A .ih B ) + ( C .ih D ) ) ) ) = ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) + ( C .ih D ) ) ) | 
						
							| 26 | 1 3 4 2 | normlem8 |  |-  ( ( A +h C ) .ih ( D +h B ) ) = ( ( ( A .ih D ) + ( C .ih B ) ) + ( ( A .ih B ) + ( C .ih D ) ) ) | 
						
							| 27 | 1 3 4 2 | normlem9 |  |-  ( ( A -h C ) .ih ( D -h B ) ) = ( ( ( A .ih D ) + ( C .ih B ) ) - ( ( A .ih B ) + ( C .ih D ) ) ) | 
						
							| 28 | 26 27 | oveq12i |  |-  ( ( ( A +h C ) .ih ( D +h B ) ) - ( ( A -h C ) .ih ( D -h B ) ) ) = ( ( ( ( A .ih D ) + ( C .ih B ) ) + ( ( A .ih B ) + ( C .ih D ) ) ) - ( ( ( A .ih D ) + ( C .ih B ) ) - ( ( A .ih B ) + ( C .ih D ) ) ) ) | 
						
							| 29 | 10 | 2timesi |  |-  ( 2 x. ( ( A .ih B ) + ( C .ih D ) ) ) = ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) + ( C .ih D ) ) ) | 
						
							| 30 | 25 28 29 | 3eqtr4i |  |-  ( ( ( A +h C ) .ih ( D +h B ) ) - ( ( A -h C ) .ih ( D -h B ) ) ) = ( 2 x. ( ( A .ih B ) + ( C .ih D ) ) ) | 
						
							| 31 |  | ax-icn |  |-  _i e. CC | 
						
							| 32 | 31 3 | hvmulcli |  |-  ( _i .h C ) e. ~H | 
						
							| 33 | 31 2 | hvmulcli |  |-  ( _i .h B ) e. ~H | 
						
							| 34 | 1 32 4 33 | normlem8 |  |-  ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) = ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) | 
						
							| 35 | 1 32 4 33 | normlem9 |  |-  ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) = ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) - ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) | 
						
							| 36 | 34 35 | oveq12i |  |-  ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) = ( ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) - ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) - ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) ) | 
						
							| 37 | 32 33 | hicli |  |-  ( ( _i .h C ) .ih ( _i .h B ) ) e. CC | 
						
							| 38 | 22 37 | addcli |  |-  ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) e. CC | 
						
							| 39 | 1 33 | hicli |  |-  ( A .ih ( _i .h B ) ) e. CC | 
						
							| 40 | 32 4 | hicli |  |-  ( ( _i .h C ) .ih D ) e. CC | 
						
							| 41 | 39 40 | addcli |  |-  ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) e. CC | 
						
							| 42 | 38 41 41 | pnncani |  |-  ( ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) - ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) - ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) ) = ( ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) | 
						
							| 43 | 41 | 2timesi |  |-  ( 2 x. ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) = ( ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) | 
						
							| 44 |  | his5 |  |-  ( ( _i e. CC /\ A e. ~H /\ B e. ~H ) -> ( A .ih ( _i .h B ) ) = ( ( * ` _i ) x. ( A .ih B ) ) ) | 
						
							| 45 | 31 1 2 44 | mp3an |  |-  ( A .ih ( _i .h B ) ) = ( ( * ` _i ) x. ( A .ih B ) ) | 
						
							| 46 |  | cji |  |-  ( * ` _i ) = -u _i | 
						
							| 47 | 46 | oveq1i |  |-  ( ( * ` _i ) x. ( A .ih B ) ) = ( -u _i x. ( A .ih B ) ) | 
						
							| 48 | 45 47 | eqtri |  |-  ( A .ih ( _i .h B ) ) = ( -u _i x. ( A .ih B ) ) | 
						
							| 49 |  | ax-his3 |  |-  ( ( _i e. CC /\ C e. ~H /\ D e. ~H ) -> ( ( _i .h C ) .ih D ) = ( _i x. ( C .ih D ) ) ) | 
						
							| 50 | 31 3 4 49 | mp3an |  |-  ( ( _i .h C ) .ih D ) = ( _i x. ( C .ih D ) ) | 
						
							| 51 | 48 50 | oveq12i |  |-  ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) = ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) | 
						
							| 52 | 51 | oveq2i |  |-  ( 2 x. ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) = ( 2 x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) | 
						
							| 53 | 43 52 | eqtr3i |  |-  ( ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) = ( 2 x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) | 
						
							| 54 | 36 42 53 | 3eqtri |  |-  ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) = ( 2 x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) | 
						
							| 55 | 54 | oveq2i |  |-  ( _i x. ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) ) = ( _i x. ( 2 x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) ) | 
						
							| 56 |  | negicn |  |-  -u _i e. CC | 
						
							| 57 | 56 6 | mulcli |  |-  ( -u _i x. ( A .ih B ) ) e. CC | 
						
							| 58 | 31 9 | mulcli |  |-  ( _i x. ( C .ih D ) ) e. CC | 
						
							| 59 | 57 58 | addcli |  |-  ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) e. CC | 
						
							| 60 | 8 31 59 | mul12i |  |-  ( 2 x. ( _i x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) ) = ( _i x. ( 2 x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) ) | 
						
							| 61 | 31 57 58 | adddii |  |-  ( _i x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) = ( ( _i x. ( -u _i x. ( A .ih B ) ) ) + ( _i x. ( _i x. ( C .ih D ) ) ) ) | 
						
							| 62 | 31 31 | mulneg2i |  |-  ( _i x. -u _i ) = -u ( _i x. _i ) | 
						
							| 63 |  | ixi |  |-  ( _i x. _i ) = -u 1 | 
						
							| 64 | 63 | negeqi |  |-  -u ( _i x. _i ) = -u -u 1 | 
						
							| 65 |  | negneg1e1 |  |-  -u -u 1 = 1 | 
						
							| 66 | 62 64 65 | 3eqtri |  |-  ( _i x. -u _i ) = 1 | 
						
							| 67 | 66 | oveq1i |  |-  ( ( _i x. -u _i ) x. ( A .ih B ) ) = ( 1 x. ( A .ih B ) ) | 
						
							| 68 | 31 56 6 | mulassi |  |-  ( ( _i x. -u _i ) x. ( A .ih B ) ) = ( _i x. ( -u _i x. ( A .ih B ) ) ) | 
						
							| 69 | 6 | mullidi |  |-  ( 1 x. ( A .ih B ) ) = ( A .ih B ) | 
						
							| 70 | 67 68 69 | 3eqtr3i |  |-  ( _i x. ( -u _i x. ( A .ih B ) ) ) = ( A .ih B ) | 
						
							| 71 | 63 | oveq1i |  |-  ( ( _i x. _i ) x. ( C .ih D ) ) = ( -u 1 x. ( C .ih D ) ) | 
						
							| 72 | 31 31 9 | mulassi |  |-  ( ( _i x. _i ) x. ( C .ih D ) ) = ( _i x. ( _i x. ( C .ih D ) ) ) | 
						
							| 73 | 9 | mulm1i |  |-  ( -u 1 x. ( C .ih D ) ) = -u ( C .ih D ) | 
						
							| 74 | 71 72 73 | 3eqtr3i |  |-  ( _i x. ( _i x. ( C .ih D ) ) ) = -u ( C .ih D ) | 
						
							| 75 | 70 74 | oveq12i |  |-  ( ( _i x. ( -u _i x. ( A .ih B ) ) ) + ( _i x. ( _i x. ( C .ih D ) ) ) ) = ( ( A .ih B ) + -u ( C .ih D ) ) | 
						
							| 76 | 6 9 | negsubi |  |-  ( ( A .ih B ) + -u ( C .ih D ) ) = ( ( A .ih B ) - ( C .ih D ) ) | 
						
							| 77 | 61 75 76 | 3eqtri |  |-  ( _i x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) = ( ( A .ih B ) - ( C .ih D ) ) | 
						
							| 78 | 77 | oveq2i |  |-  ( 2 x. ( _i x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) ) = ( 2 x. ( ( A .ih B ) - ( C .ih D ) ) ) | 
						
							| 79 | 55 60 78 | 3eqtr2i |  |-  ( _i x. ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) ) = ( 2 x. ( ( A .ih B ) - ( C .ih D ) ) ) | 
						
							| 80 | 30 79 | oveq12i |  |-  ( ( ( ( A +h C ) .ih ( D +h B ) ) - ( ( A -h C ) .ih ( D -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) ) ) = ( ( 2 x. ( ( A .ih B ) + ( C .ih D ) ) ) + ( 2 x. ( ( A .ih B ) - ( C .ih D ) ) ) ) | 
						
							| 81 | 12 21 80 | 3eqtr4i |  |-  ( 4 x. ( A .ih B ) ) = ( ( ( ( A +h C ) .ih ( D +h B ) ) - ( ( A -h C ) .ih ( D -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) ) ) | 
						
							| 82 | 5 6 7 81 | mvllmuli |  |-  ( A .ih B ) = ( ( ( ( ( A +h C ) .ih ( D +h B ) ) - ( ( A -h C ) .ih ( D -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) ) ) / 4 ) |