Step |
Hyp |
Ref |
Expression |
1 |
|
polid2.1 |
|- A e. ~H |
2 |
|
polid2.2 |
|- B e. ~H |
3 |
|
polid2.3 |
|- C e. ~H |
4 |
|
polid2.4 |
|- D e. ~H |
5 |
|
4cn |
|- 4 e. CC |
6 |
1 2
|
hicli |
|- ( A .ih B ) e. CC |
7 |
|
4ne0 |
|- 4 =/= 0 |
8 |
|
2cn |
|- 2 e. CC |
9 |
3 4
|
hicli |
|- ( C .ih D ) e. CC |
10 |
6 9
|
addcli |
|- ( ( A .ih B ) + ( C .ih D ) ) e. CC |
11 |
6 9
|
subcli |
|- ( ( A .ih B ) - ( C .ih D ) ) e. CC |
12 |
8 10 11
|
adddii |
|- ( 2 x. ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) ) = ( ( 2 x. ( ( A .ih B ) + ( C .ih D ) ) ) + ( 2 x. ( ( A .ih B ) - ( C .ih D ) ) ) ) |
13 |
|
ppncan |
|- ( ( ( A .ih B ) e. CC /\ ( C .ih D ) e. CC /\ ( A .ih B ) e. CC ) -> ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) = ( ( A .ih B ) + ( A .ih B ) ) ) |
14 |
6 9 6 13
|
mp3an |
|- ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) = ( ( A .ih B ) + ( A .ih B ) ) |
15 |
6
|
2timesi |
|- ( 2 x. ( A .ih B ) ) = ( ( A .ih B ) + ( A .ih B ) ) |
16 |
14 15
|
eqtr4i |
|- ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) = ( 2 x. ( A .ih B ) ) |
17 |
16
|
oveq2i |
|- ( 2 x. ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) ) = ( 2 x. ( 2 x. ( A .ih B ) ) ) |
18 |
8 8 6
|
mulassi |
|- ( ( 2 x. 2 ) x. ( A .ih B ) ) = ( 2 x. ( 2 x. ( A .ih B ) ) ) |
19 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
20 |
19
|
oveq1i |
|- ( ( 2 x. 2 ) x. ( A .ih B ) ) = ( 4 x. ( A .ih B ) ) |
21 |
17 18 20
|
3eqtr2ri |
|- ( 4 x. ( A .ih B ) ) = ( 2 x. ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) - ( C .ih D ) ) ) ) |
22 |
1 4
|
hicli |
|- ( A .ih D ) e. CC |
23 |
3 2
|
hicli |
|- ( C .ih B ) e. CC |
24 |
22 23
|
addcli |
|- ( ( A .ih D ) + ( C .ih B ) ) e. CC |
25 |
24 10 10
|
pnncani |
|- ( ( ( ( A .ih D ) + ( C .ih B ) ) + ( ( A .ih B ) + ( C .ih D ) ) ) - ( ( ( A .ih D ) + ( C .ih B ) ) - ( ( A .ih B ) + ( C .ih D ) ) ) ) = ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) + ( C .ih D ) ) ) |
26 |
1 3 4 2
|
normlem8 |
|- ( ( A +h C ) .ih ( D +h B ) ) = ( ( ( A .ih D ) + ( C .ih B ) ) + ( ( A .ih B ) + ( C .ih D ) ) ) |
27 |
1 3 4 2
|
normlem9 |
|- ( ( A -h C ) .ih ( D -h B ) ) = ( ( ( A .ih D ) + ( C .ih B ) ) - ( ( A .ih B ) + ( C .ih D ) ) ) |
28 |
26 27
|
oveq12i |
|- ( ( ( A +h C ) .ih ( D +h B ) ) - ( ( A -h C ) .ih ( D -h B ) ) ) = ( ( ( ( A .ih D ) + ( C .ih B ) ) + ( ( A .ih B ) + ( C .ih D ) ) ) - ( ( ( A .ih D ) + ( C .ih B ) ) - ( ( A .ih B ) + ( C .ih D ) ) ) ) |
29 |
10
|
2timesi |
|- ( 2 x. ( ( A .ih B ) + ( C .ih D ) ) ) = ( ( ( A .ih B ) + ( C .ih D ) ) + ( ( A .ih B ) + ( C .ih D ) ) ) |
30 |
25 28 29
|
3eqtr4i |
|- ( ( ( A +h C ) .ih ( D +h B ) ) - ( ( A -h C ) .ih ( D -h B ) ) ) = ( 2 x. ( ( A .ih B ) + ( C .ih D ) ) ) |
31 |
|
ax-icn |
|- _i e. CC |
32 |
31 3
|
hvmulcli |
|- ( _i .h C ) e. ~H |
33 |
31 2
|
hvmulcli |
|- ( _i .h B ) e. ~H |
34 |
1 32 4 33
|
normlem8 |
|- ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) = ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) |
35 |
1 32 4 33
|
normlem9 |
|- ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) = ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) - ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) |
36 |
34 35
|
oveq12i |
|- ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) = ( ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) - ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) - ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) ) |
37 |
32 33
|
hicli |
|- ( ( _i .h C ) .ih ( _i .h B ) ) e. CC |
38 |
22 37
|
addcli |
|- ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) e. CC |
39 |
1 33
|
hicli |
|- ( A .ih ( _i .h B ) ) e. CC |
40 |
32 4
|
hicli |
|- ( ( _i .h C ) .ih D ) e. CC |
41 |
39 40
|
addcli |
|- ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) e. CC |
42 |
38 41 41
|
pnncani |
|- ( ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) - ( ( ( A .ih D ) + ( ( _i .h C ) .ih ( _i .h B ) ) ) - ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) ) = ( ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) |
43 |
41
|
2timesi |
|- ( 2 x. ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) = ( ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) |
44 |
|
his5 |
|- ( ( _i e. CC /\ A e. ~H /\ B e. ~H ) -> ( A .ih ( _i .h B ) ) = ( ( * ` _i ) x. ( A .ih B ) ) ) |
45 |
31 1 2 44
|
mp3an |
|- ( A .ih ( _i .h B ) ) = ( ( * ` _i ) x. ( A .ih B ) ) |
46 |
|
cji |
|- ( * ` _i ) = -u _i |
47 |
46
|
oveq1i |
|- ( ( * ` _i ) x. ( A .ih B ) ) = ( -u _i x. ( A .ih B ) ) |
48 |
45 47
|
eqtri |
|- ( A .ih ( _i .h B ) ) = ( -u _i x. ( A .ih B ) ) |
49 |
|
ax-his3 |
|- ( ( _i e. CC /\ C e. ~H /\ D e. ~H ) -> ( ( _i .h C ) .ih D ) = ( _i x. ( C .ih D ) ) ) |
50 |
31 3 4 49
|
mp3an |
|- ( ( _i .h C ) .ih D ) = ( _i x. ( C .ih D ) ) |
51 |
48 50
|
oveq12i |
|- ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) = ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) |
52 |
51
|
oveq2i |
|- ( 2 x. ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) = ( 2 x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) |
53 |
43 52
|
eqtr3i |
|- ( ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) + ( ( A .ih ( _i .h B ) ) + ( ( _i .h C ) .ih D ) ) ) = ( 2 x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) |
54 |
36 42 53
|
3eqtri |
|- ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) = ( 2 x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) |
55 |
54
|
oveq2i |
|- ( _i x. ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) ) = ( _i x. ( 2 x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) ) |
56 |
|
negicn |
|- -u _i e. CC |
57 |
56 6
|
mulcli |
|- ( -u _i x. ( A .ih B ) ) e. CC |
58 |
31 9
|
mulcli |
|- ( _i x. ( C .ih D ) ) e. CC |
59 |
57 58
|
addcli |
|- ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) e. CC |
60 |
8 31 59
|
mul12i |
|- ( 2 x. ( _i x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) ) = ( _i x. ( 2 x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) ) |
61 |
31 57 58
|
adddii |
|- ( _i x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) = ( ( _i x. ( -u _i x. ( A .ih B ) ) ) + ( _i x. ( _i x. ( C .ih D ) ) ) ) |
62 |
31 31
|
mulneg2i |
|- ( _i x. -u _i ) = -u ( _i x. _i ) |
63 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
64 |
63
|
negeqi |
|- -u ( _i x. _i ) = -u -u 1 |
65 |
|
negneg1e1 |
|- -u -u 1 = 1 |
66 |
62 64 65
|
3eqtri |
|- ( _i x. -u _i ) = 1 |
67 |
66
|
oveq1i |
|- ( ( _i x. -u _i ) x. ( A .ih B ) ) = ( 1 x. ( A .ih B ) ) |
68 |
31 56 6
|
mulassi |
|- ( ( _i x. -u _i ) x. ( A .ih B ) ) = ( _i x. ( -u _i x. ( A .ih B ) ) ) |
69 |
6
|
mulid2i |
|- ( 1 x. ( A .ih B ) ) = ( A .ih B ) |
70 |
67 68 69
|
3eqtr3i |
|- ( _i x. ( -u _i x. ( A .ih B ) ) ) = ( A .ih B ) |
71 |
63
|
oveq1i |
|- ( ( _i x. _i ) x. ( C .ih D ) ) = ( -u 1 x. ( C .ih D ) ) |
72 |
31 31 9
|
mulassi |
|- ( ( _i x. _i ) x. ( C .ih D ) ) = ( _i x. ( _i x. ( C .ih D ) ) ) |
73 |
9
|
mulm1i |
|- ( -u 1 x. ( C .ih D ) ) = -u ( C .ih D ) |
74 |
71 72 73
|
3eqtr3i |
|- ( _i x. ( _i x. ( C .ih D ) ) ) = -u ( C .ih D ) |
75 |
70 74
|
oveq12i |
|- ( ( _i x. ( -u _i x. ( A .ih B ) ) ) + ( _i x. ( _i x. ( C .ih D ) ) ) ) = ( ( A .ih B ) + -u ( C .ih D ) ) |
76 |
6 9
|
negsubi |
|- ( ( A .ih B ) + -u ( C .ih D ) ) = ( ( A .ih B ) - ( C .ih D ) ) |
77 |
61 75 76
|
3eqtri |
|- ( _i x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) = ( ( A .ih B ) - ( C .ih D ) ) |
78 |
77
|
oveq2i |
|- ( 2 x. ( _i x. ( ( -u _i x. ( A .ih B ) ) + ( _i x. ( C .ih D ) ) ) ) ) = ( 2 x. ( ( A .ih B ) - ( C .ih D ) ) ) |
79 |
55 60 78
|
3eqtr2i |
|- ( _i x. ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) ) = ( 2 x. ( ( A .ih B ) - ( C .ih D ) ) ) |
80 |
30 79
|
oveq12i |
|- ( ( ( ( A +h C ) .ih ( D +h B ) ) - ( ( A -h C ) .ih ( D -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) ) ) = ( ( 2 x. ( ( A .ih B ) + ( C .ih D ) ) ) + ( 2 x. ( ( A .ih B ) - ( C .ih D ) ) ) ) |
81 |
12 21 80
|
3eqtr4i |
|- ( 4 x. ( A .ih B ) ) = ( ( ( ( A +h C ) .ih ( D +h B ) ) - ( ( A -h C ) .ih ( D -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) ) ) |
82 |
5 6 7 81
|
mvllmuli |
|- ( A .ih B ) = ( ( ( ( ( A +h C ) .ih ( D +h B ) ) - ( ( A -h C ) .ih ( D -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h C ) ) .ih ( D +h ( _i .h B ) ) ) - ( ( A -h ( _i .h C ) ) .ih ( D -h ( _i .h B ) ) ) ) ) ) / 4 ) |