| Step | Hyp | Ref | Expression | 
						
							| 1 |  | polid.1 |  |-  A e. ~H | 
						
							| 2 |  | polid.2 |  |-  B e. ~H | 
						
							| 3 | 1 2 2 1 | polid2i |  |-  ( A .ih B ) = ( ( ( ( ( A +h B ) .ih ( A +h B ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) / 4 ) | 
						
							| 4 | 1 2 | hvaddcli |  |-  ( A +h B ) e. ~H | 
						
							| 5 | 4 | normsqi |  |-  ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( A +h B ) .ih ( A +h B ) ) | 
						
							| 6 | 1 2 | hvsubcli |  |-  ( A -h B ) e. ~H | 
						
							| 7 | 6 | normsqi |  |-  ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( A -h B ) .ih ( A -h B ) ) | 
						
							| 8 | 5 7 | oveq12i |  |-  ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) = ( ( ( A +h B ) .ih ( A +h B ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) | 
						
							| 9 |  | ax-icn |  |-  _i e. CC | 
						
							| 10 | 9 2 | hvmulcli |  |-  ( _i .h B ) e. ~H | 
						
							| 11 | 1 10 | hvaddcli |  |-  ( A +h ( _i .h B ) ) e. ~H | 
						
							| 12 | 11 | normsqi |  |-  ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) = ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) | 
						
							| 13 | 1 10 | hvsubcli |  |-  ( A -h ( _i .h B ) ) e. ~H | 
						
							| 14 | 13 | normsqi |  |-  ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) = ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) | 
						
							| 15 | 12 14 | oveq12i |  |-  ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) = ( ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) ) | 
						
							| 16 | 15 | oveq2i |  |-  ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) = ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) ) ) | 
						
							| 17 | 8 16 | oveq12i |  |-  ( ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) ) = ( ( ( ( A +h B ) .ih ( A +h B ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) | 
						
							| 18 | 17 | oveq1i |  |-  ( ( ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) ) / 4 ) = ( ( ( ( ( A +h B ) .ih ( A +h B ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) / 4 ) | 
						
							| 19 | 3 18 | eqtr4i |  |-  ( A .ih B ) = ( ( ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) ) / 4 ) |