Metamath Proof Explorer


Theorem polssatN

Description: The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polssat.a
|- A = ( Atoms ` K )
polssat.p
|- ._|_ = ( _|_P ` K )
Assertion polssatN
|- ( ( K e. HL /\ X C_ A ) -> ( ._|_ ` X ) C_ A )

Proof

Step Hyp Ref Expression
1 polssat.a
 |-  A = ( Atoms ` K )
2 polssat.p
 |-  ._|_ = ( _|_P ` K )
3 eqid
 |-  ( PSubSp ` K ) = ( PSubSp ` K )
4 1 3 2 polsubN
 |-  ( ( K e. HL /\ X C_ A ) -> ( ._|_ ` X ) e. ( PSubSp ` K ) )
5 1 3 psubssat
 |-  ( ( K e. HL /\ ( ._|_ ` X ) e. ( PSubSp ` K ) ) -> ( ._|_ ` X ) C_ A )
6 4 5 syldan
 |-  ( ( K e. HL /\ X C_ A ) -> ( ._|_ ` X ) C_ A )