Metamath Proof Explorer


Theorem polsubN

Description: The polarity of a set of atoms is a projective subspace. (Contributed by NM, 23-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polsubsp.a
|- A = ( Atoms ` K )
polsubsp.s
|- S = ( PSubSp ` K )
polsubsp.p
|- ._|_ = ( _|_P ` K )
Assertion polsubN
|- ( ( K e. HL /\ X C_ A ) -> ( ._|_ ` X ) e. S )

Proof

Step Hyp Ref Expression
1 polsubsp.a
 |-  A = ( Atoms ` K )
2 polsubsp.s
 |-  S = ( PSubSp ` K )
3 polsubsp.p
 |-  ._|_ = ( _|_P ` K )
4 eqid
 |-  ( lub ` K ) = ( lub ` K )
5 eqid
 |-  ( oc ` K ) = ( oc ` K )
6 eqid
 |-  ( pmap ` K ) = ( pmap ` K )
7 4 5 1 6 3 polval2N
 |-  ( ( K e. HL /\ X C_ A ) -> ( ._|_ ` X ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` X ) ) ) )
8 hllat
 |-  ( K e. HL -> K e. Lat )
9 8 adantr
 |-  ( ( K e. HL /\ X C_ A ) -> K e. Lat )
10 hlop
 |-  ( K e. HL -> K e. OP )
11 10 adantr
 |-  ( ( K e. HL /\ X C_ A ) -> K e. OP )
12 hlclat
 |-  ( K e. HL -> K e. CLat )
13 eqid
 |-  ( Base ` K ) = ( Base ` K )
14 13 1 atssbase
 |-  A C_ ( Base ` K )
15 sstr
 |-  ( ( X C_ A /\ A C_ ( Base ` K ) ) -> X C_ ( Base ` K ) )
16 14 15 mpan2
 |-  ( X C_ A -> X C_ ( Base ` K ) )
17 13 4 clatlubcl
 |-  ( ( K e. CLat /\ X C_ ( Base ` K ) ) -> ( ( lub ` K ) ` X ) e. ( Base ` K ) )
18 12 16 17 syl2an
 |-  ( ( K e. HL /\ X C_ A ) -> ( ( lub ` K ) ` X ) e. ( Base ` K ) )
19 13 5 opoccl
 |-  ( ( K e. OP /\ ( ( lub ` K ) ` X ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` X ) ) e. ( Base ` K ) )
20 11 18 19 syl2anc
 |-  ( ( K e. HL /\ X C_ A ) -> ( ( oc ` K ) ` ( ( lub ` K ) ` X ) ) e. ( Base ` K ) )
21 13 2 6 pmapsub
 |-  ( ( K e. Lat /\ ( ( oc ` K ) ` ( ( lub ` K ) ` X ) ) e. ( Base ` K ) ) -> ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` X ) ) ) e. S )
22 9 20 21 syl2anc
 |-  ( ( K e. HL /\ X C_ A ) -> ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` X ) ) ) e. S )
23 7 22 eqeltrd
 |-  ( ( K e. HL /\ X C_ A ) -> ( ._|_ ` X ) e. S )