Step |
Hyp |
Ref |
Expression |
1 |
|
polfval.o |
|- ._|_ = ( oc ` K ) |
2 |
|
polfval.a |
|- A = ( Atoms ` K ) |
3 |
|
polfval.m |
|- M = ( pmap ` K ) |
4 |
|
polfval.p |
|- P = ( _|_P ` K ) |
5 |
2
|
fvexi |
|- A e. _V |
6 |
5
|
elpw2 |
|- ( X e. ~P A <-> X C_ A ) |
7 |
1 2 3 4
|
polfvalN |
|- ( K e. B -> P = ( m e. ~P A |-> ( A i^i |^|_ p e. m ( M ` ( ._|_ ` p ) ) ) ) ) |
8 |
7
|
fveq1d |
|- ( K e. B -> ( P ` X ) = ( ( m e. ~P A |-> ( A i^i |^|_ p e. m ( M ` ( ._|_ ` p ) ) ) ) ` X ) ) |
9 |
|
iineq1 |
|- ( m = X -> |^|_ p e. m ( M ` ( ._|_ ` p ) ) = |^|_ p e. X ( M ` ( ._|_ ` p ) ) ) |
10 |
9
|
ineq2d |
|- ( m = X -> ( A i^i |^|_ p e. m ( M ` ( ._|_ ` p ) ) ) = ( A i^i |^|_ p e. X ( M ` ( ._|_ ` p ) ) ) ) |
11 |
|
eqid |
|- ( m e. ~P A |-> ( A i^i |^|_ p e. m ( M ` ( ._|_ ` p ) ) ) ) = ( m e. ~P A |-> ( A i^i |^|_ p e. m ( M ` ( ._|_ ` p ) ) ) ) |
12 |
5
|
inex1 |
|- ( A i^i |^|_ p e. X ( M ` ( ._|_ ` p ) ) ) e. _V |
13 |
10 11 12
|
fvmpt |
|- ( X e. ~P A -> ( ( m e. ~P A |-> ( A i^i |^|_ p e. m ( M ` ( ._|_ ` p ) ) ) ) ` X ) = ( A i^i |^|_ p e. X ( M ` ( ._|_ ` p ) ) ) ) |
14 |
8 13
|
sylan9eq |
|- ( ( K e. B /\ X e. ~P A ) -> ( P ` X ) = ( A i^i |^|_ p e. X ( M ` ( ._|_ ` p ) ) ) ) |
15 |
6 14
|
sylan2br |
|- ( ( K e. B /\ X C_ A ) -> ( P ` X ) = ( A i^i |^|_ p e. X ( M ` ( ._|_ ` p ) ) ) ) |