| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( A e. X /\ B e. X ) )  | 
						
						
							| 2 | 
							
								
							 | 
							an3 | 
							 |-  ( ( ( Rel R /\ R Po X ) /\ ( A R B /\ C R D ) ) -> ( Rel R /\ C R D ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							3adant2 | 
							 |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( Rel R /\ C R D ) )  | 
						
						
							| 4 | 
							
								
							 | 
							brrelex12 | 
							 |-  ( ( Rel R /\ C R D ) -> ( C e. _V /\ D e. _V ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							syl | 
							 |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( C e. _V /\ D e. _V ) )  | 
						
						
							| 6 | 
							
								
							 | 
							preq12bg | 
							 |-  ( ( ( A e. X /\ B e. X ) /\ ( C e. _V /\ D e. _V ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) | 
						
						
							| 7 | 
							
								1 5 6
							 | 
							syl2anc | 
							 |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) | 
						
						
							| 8 | 
							
								
							 | 
							idd | 
							 |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( ( A = C /\ B = D ) -> ( A = C /\ B = D ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							breq12 | 
							 |-  ( ( B = C /\ A = D ) -> ( B R A <-> C R D ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ancoms | 
							 |-  ( ( A = D /\ B = C ) -> ( B R A <-> C R D ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							bicomd | 
							 |-  ( ( A = D /\ B = C ) -> ( C R D <-> B R A ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							anbi2d | 
							 |-  ( ( A = D /\ B = C ) -> ( ( A R B /\ C R D ) <-> ( A R B /\ B R A ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							po2nr | 
							 |-  ( ( R Po X /\ ( A e. X /\ B e. X ) ) -> -. ( A R B /\ B R A ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantll | 
							 |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) ) -> -. ( A R B /\ B R A ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							pm2.21d | 
							 |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) ) -> ( ( A R B /\ B R A ) -> ( A = C /\ B = D ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ex | 
							 |-  ( ( Rel R /\ R Po X ) -> ( ( A e. X /\ B e. X ) -> ( ( A R B /\ B R A ) -> ( A = C /\ B = D ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							com13 | 
							 |-  ( ( A R B /\ B R A ) -> ( ( A e. X /\ B e. X ) -> ( ( Rel R /\ R Po X ) -> ( A = C /\ B = D ) ) ) )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							biimtrdi | 
							 |-  ( ( A = D /\ B = C ) -> ( ( A R B /\ C R D ) -> ( ( A e. X /\ B e. X ) -> ( ( Rel R /\ R Po X ) -> ( A = C /\ B = D ) ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							com23 | 
							 |-  ( ( A = D /\ B = C ) -> ( ( A e. X /\ B e. X ) -> ( ( A R B /\ C R D ) -> ( ( Rel R /\ R Po X ) -> ( A = C /\ B = D ) ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							com14 | 
							 |-  ( ( Rel R /\ R Po X ) -> ( ( A e. X /\ B e. X ) -> ( ( A R B /\ C R D ) -> ( ( A = D /\ B = C ) -> ( A = C /\ B = D ) ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							3imp | 
							 |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( ( A = D /\ B = C ) -> ( A = C /\ B = D ) ) )  | 
						
						
							| 22 | 
							
								8 21
							 | 
							jaod | 
							 |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) -> ( A = C /\ B = D ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							orc | 
							 |-  ( ( A = C /\ B = D ) -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							impbid1 | 
							 |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) <-> ( A = C /\ B = D ) ) )  | 
						
						
							| 25 | 
							
								7 24
							 | 
							bitrd | 
							 |-  ( ( ( Rel R /\ R Po X ) /\ ( A e. X /\ B e. X ) /\ ( A R B /\ C R D ) ) -> ( { A , B } = { C , D } <-> ( A = C /\ B = D ) ) ) |