| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resubcl |
|- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
| 2 |
1
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) |
| 3 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
| 4 |
|
ltaddpos |
|- ( ( ( B - A ) e. RR /\ A e. RR ) -> ( 0 < ( B - A ) <-> A < ( A + ( B - A ) ) ) ) |
| 5 |
2 3 4
|
syl2anc |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 < ( B - A ) <-> A < ( A + ( B - A ) ) ) ) |
| 6 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 7 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 8 |
|
pncan3 |
|- ( ( A e. CC /\ B e. CC ) -> ( A + ( B - A ) ) = B ) |
| 9 |
6 7 8
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( A + ( B - A ) ) = B ) |
| 10 |
9
|
breq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( A < ( A + ( B - A ) ) <-> A < B ) ) |
| 11 |
5 10
|
bitr2d |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B - A ) ) ) |