Step |
Hyp |
Ref |
Expression |
1 |
|
posdifsd.1 |
|- ( ph -> A e. No ) |
2 |
|
posdifsd.2 |
|- ( ph -> B e. No ) |
3 |
|
0sno |
|- 0s e. No |
4 |
3
|
a1i |
|- ( ph -> 0s e. No ) |
5 |
2 1
|
subscld |
|- ( ph -> ( B -s A ) e. No ) |
6 |
4 5 1
|
sltadd1d |
|- ( ph -> ( 0s ( 0s +s A ) |
7 |
|
addslid |
|- ( A e. No -> ( 0s +s A ) = A ) |
8 |
1 7
|
syl |
|- ( ph -> ( 0s +s A ) = A ) |
9 |
|
npcans |
|- ( ( B e. No /\ A e. No ) -> ( ( B -s A ) +s A ) = B ) |
10 |
2 1 9
|
syl2anc |
|- ( ph -> ( ( B -s A ) +s A ) = B ) |
11 |
8 10
|
breq12d |
|- ( ph -> ( ( 0s +s A ) A |
12 |
6 11
|
bitr2d |
|- ( ph -> ( A 0s |