Step |
Hyp |
Ref |
Expression |
1 |
|
posglbdg.l |
|- .<_ = ( le ` K ) |
2 |
|
posglbdg.b |
|- ( ph -> B = ( Base ` K ) ) |
3 |
|
posglbdg.g |
|- ( ph -> G = ( glb ` K ) ) |
4 |
|
posglbdg.k |
|- ( ph -> K e. Poset ) |
5 |
|
posglbdg.s |
|- ( ph -> S C_ B ) |
6 |
|
posglbdg.t |
|- ( ph -> T e. B ) |
7 |
|
posglbdg.lb |
|- ( ( ph /\ x e. S ) -> T .<_ x ) |
8 |
|
posglbdg.gt |
|- ( ( ph /\ y e. B /\ A. x e. S y .<_ x ) -> y .<_ T ) |
9 |
|
eqid |
|- ( ODual ` K ) = ( ODual ` K ) |
10 |
9 1
|
oduleval |
|- `' .<_ = ( le ` ( ODual ` K ) ) |
11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
12 |
9 11
|
odubas |
|- ( Base ` K ) = ( Base ` ( ODual ` K ) ) |
13 |
2 12
|
eqtrdi |
|- ( ph -> B = ( Base ` ( ODual ` K ) ) ) |
14 |
|
eqid |
|- ( glb ` K ) = ( glb ` K ) |
15 |
9 14
|
odulub |
|- ( K e. Poset -> ( glb ` K ) = ( lub ` ( ODual ` K ) ) ) |
16 |
4 15
|
syl |
|- ( ph -> ( glb ` K ) = ( lub ` ( ODual ` K ) ) ) |
17 |
3 16
|
eqtrd |
|- ( ph -> G = ( lub ` ( ODual ` K ) ) ) |
18 |
9
|
odupos |
|- ( K e. Poset -> ( ODual ` K ) e. Poset ) |
19 |
4 18
|
syl |
|- ( ph -> ( ODual ` K ) e. Poset ) |
20 |
|
vex |
|- x e. _V |
21 |
|
brcnvg |
|- ( ( x e. _V /\ T e. B ) -> ( x `' .<_ T <-> T .<_ x ) ) |
22 |
20 6 21
|
sylancr |
|- ( ph -> ( x `' .<_ T <-> T .<_ x ) ) |
23 |
22
|
adantr |
|- ( ( ph /\ x e. S ) -> ( x `' .<_ T <-> T .<_ x ) ) |
24 |
7 23
|
mpbird |
|- ( ( ph /\ x e. S ) -> x `' .<_ T ) |
25 |
|
vex |
|- y e. _V |
26 |
20 25
|
brcnv |
|- ( x `' .<_ y <-> y .<_ x ) |
27 |
26
|
ralbii |
|- ( A. x e. S x `' .<_ y <-> A. x e. S y .<_ x ) |
28 |
27 8
|
syl3an3b |
|- ( ( ph /\ y e. B /\ A. x e. S x `' .<_ y ) -> y .<_ T ) |
29 |
|
brcnvg |
|- ( ( T e. B /\ y e. _V ) -> ( T `' .<_ y <-> y .<_ T ) ) |
30 |
6 25 29
|
sylancl |
|- ( ph -> ( T `' .<_ y <-> y .<_ T ) ) |
31 |
30
|
3ad2ant1 |
|- ( ( ph /\ y e. B /\ A. x e. S x `' .<_ y ) -> ( T `' .<_ y <-> y .<_ T ) ) |
32 |
28 31
|
mpbird |
|- ( ( ph /\ y e. B /\ A. x e. S x `' .<_ y ) -> T `' .<_ y ) |
33 |
10 13 17 19 5 6 24 32
|
poslubdg |
|- ( ph -> ( G ` S ) = T ) |