Step |
Hyp |
Ref |
Expression |
1 |
|
posjidm.b |
|- B = ( Base ` K ) |
2 |
|
posmidm.m |
|- ./\ = ( meet ` K ) |
3 |
|
eqid |
|- ( glb ` K ) = ( glb ` K ) |
4 |
|
simpl |
|- ( ( K e. Poset /\ X e. B ) -> K e. Poset ) |
5 |
|
simpr |
|- ( ( K e. Poset /\ X e. B ) -> X e. B ) |
6 |
3 2 4 5 5
|
meetval |
|- ( ( K e. Poset /\ X e. B ) -> ( X ./\ X ) = ( ( glb ` K ) ` { X , X } ) ) |
7 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
8 |
1 7
|
posref |
|- ( ( K e. Poset /\ X e. B ) -> X ( le ` K ) X ) |
9 |
|
eqidd |
|- ( ( K e. Poset /\ X e. B ) -> { X , X } = { X , X } ) |
10 |
4 1 5 5 7 8 9 3
|
glbpr |
|- ( ( K e. Poset /\ X e. B ) -> ( ( glb ` K ) ` { X , X } ) = X ) |
11 |
6 10
|
eqtrd |
|- ( ( K e. Poset /\ X e. B ) -> ( X ./\ X ) = X ) |