Description: A poset is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | posprs | |- ( K e. Poset -> K e. Proset ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | |- ( Base ` K ) = ( Base ` K ) | |
| 2 | eqid | |- ( le ` K ) = ( le ` K ) | |
| 3 | 1 2 | ispos2 | |- ( K e. Poset <-> ( K e. Proset /\ A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( ( x ( le ` K ) y /\ y ( le ` K ) x ) -> x = y ) ) ) | 
| 4 | 3 | simplbi | |- ( K e. Poset -> K e. Proset ) |