Description: A poset is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | posprs | |- ( K e. Poset -> K e. Proset ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
2 | eqid | |- ( le ` K ) = ( le ` K ) |
|
3 | 1 2 | ispos2 | |- ( K e. Poset <-> ( K e. Proset /\ A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( ( x ( le ` K ) y /\ y ( le ` K ) x ) -> x = y ) ) ) |
4 | 3 | simplbi | |- ( K e. Poset -> K e. Proset ) |