Metamath Proof Explorer


Theorem posref

Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Hypotheses posi.b
|- B = ( Base ` K )
posi.l
|- .<_ = ( le ` K )
Assertion posref
|- ( ( K e. Poset /\ X e. B ) -> X .<_ X )

Proof

Step Hyp Ref Expression
1 posi.b
 |-  B = ( Base ` K )
2 posi.l
 |-  .<_ = ( le ` K )
3 posprs
 |-  ( K e. Poset -> K e. Proset )
4 1 2 prsref
 |-  ( ( K e. Proset /\ X e. B ) -> X .<_ X )
5 3 4 sylan
 |-  ( ( K e. Poset /\ X e. B ) -> X .<_ X )