Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011) (Proof shortened by OpenAI, 25-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | posi.b | |- B = ( Base ` K ) |
|
| posi.l | |- .<_ = ( le ` K ) |
||
| Assertion | posref | |- ( ( K e. Poset /\ X e. B ) -> X .<_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posi.b | |- B = ( Base ` K ) |
|
| 2 | posi.l | |- .<_ = ( le ` K ) |
|
| 3 | posprs | |- ( K e. Poset -> K e. Proset ) |
|
| 4 | 1 2 | prsref | |- ( ( K e. Proset /\ X e. B ) -> X .<_ X ) |
| 5 | 3 4 | sylan | |- ( ( K e. Poset /\ X e. B ) -> X .<_ X ) |