Metamath Proof Explorer


Theorem postr

Description: A poset ordering is transitive. (Contributed by NM, 11-Sep-2011)

Ref Expression
Hypotheses posi.b
|- B = ( Base ` K )
posi.l
|- .<_ = ( le ` K )
Assertion postr
|- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) )

Proof

Step Hyp Ref Expression
1 posi.b
 |-  B = ( Base ` K )
2 posi.l
 |-  .<_ = ( le ` K )
3 1 2 posi
 |-  ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ X /\ ( ( X .<_ Y /\ Y .<_ X ) -> X = Y ) /\ ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) ) )
4 3 simp3d
 |-  ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) )