Description: A partial order is a transitive relation. (Contributed by NM, 27-Mar-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | potr | |- ( ( R Po A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( B R C /\ C R D ) -> B R D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pocl | |- ( R Po A -> ( ( B e. A /\ C e. A /\ D e. A ) -> ( -. B R B /\ ( ( B R C /\ C R D ) -> B R D ) ) ) ) |
|
2 | 1 | imp | |- ( ( R Po A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( -. B R B /\ ( ( B R C /\ C R D ) -> B R D ) ) ) |
3 | 2 | simprd | |- ( ( R Po A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( B R C /\ C R D ) -> B R D ) ) |