Metamath Proof Explorer


Theorem potr

Description: A partial order is a transitive relation. (Contributed by NM, 27-Mar-1997)

Ref Expression
Assertion potr
|- ( ( R Po A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( B R C /\ C R D ) -> B R D ) )

Proof

Step Hyp Ref Expression
1 pocl
 |-  ( R Po A -> ( ( B e. A /\ C e. A /\ D e. A ) -> ( -. B R B /\ ( ( B R C /\ C R D ) -> B R D ) ) ) )
2 1 imp
 |-  ( ( R Po A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( -. B R B /\ ( ( B R C /\ C R D ) -> B R D ) ) )
3 2 simprd
 |-  ( ( R Po A /\ ( B e. A /\ C e. A /\ D e. A ) ) -> ( ( B R C /\ C R D ) -> B R D ) )