Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> P e. Prime ) |
2 |
|
simpr |
|- ( ( P e. Prime /\ A e. ZZ ) -> A e. ZZ ) |
3 |
2
|
adantr |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> A e. ZZ ) |
4 |
|
m1dvdsndvds |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A - 1 ) -> -. P || A ) ) |
5 |
4
|
imp |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> -. P || A ) |
6 |
|
eqid |
|- ( ( A ^ ( P - 2 ) ) mod P ) = ( ( A ^ ( P - 2 ) ) mod P ) |
7 |
6
|
modprminv |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( ( A ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) ) |
8 |
|
simpr |
|- ( ( ( ( A ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) -> ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) |
9 |
8
|
eqcomd |
|- ( ( ( ( A ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) -> 1 = ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) ) |
10 |
7 9
|
syl |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> 1 = ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) ) |
11 |
1 3 5 10
|
syl3anc |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> 1 = ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) ) |
12 |
|
modprm1div |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( ( A mod P ) = 1 <-> P || ( A - 1 ) ) ) |
13 |
12
|
biimpar |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( A mod P ) = 1 ) |
14 |
13
|
oveq1d |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( A mod P ) x. ( ( A ^ ( P - 2 ) ) mod P ) ) = ( 1 x. ( ( A ^ ( P - 2 ) ) mod P ) ) ) |
15 |
14
|
oveq1d |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( ( A mod P ) x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( 1 x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) ) |
16 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
17 |
16
|
ad2antlr |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> A e. RR ) |
18 |
|
prmm2nn0 |
|- ( P e. Prime -> ( P - 2 ) e. NN0 ) |
19 |
18
|
anim1ci |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( A e. ZZ /\ ( P - 2 ) e. NN0 ) ) |
20 |
19
|
adantr |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( A e. ZZ /\ ( P - 2 ) e. NN0 ) ) |
21 |
|
zexpcl |
|- ( ( A e. ZZ /\ ( P - 2 ) e. NN0 ) -> ( A ^ ( P - 2 ) ) e. ZZ ) |
22 |
20 21
|
syl |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( A ^ ( P - 2 ) ) e. ZZ ) |
23 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
24 |
23
|
adantr |
|- ( ( P e. Prime /\ A e. ZZ ) -> P e. NN ) |
25 |
24
|
adantr |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> P e. NN ) |
26 |
22 25
|
zmodcld |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( A ^ ( P - 2 ) ) mod P ) e. NN0 ) |
27 |
26
|
nn0zd |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( A ^ ( P - 2 ) ) mod P ) e. ZZ ) |
28 |
23
|
nnrpd |
|- ( P e. Prime -> P e. RR+ ) |
29 |
28
|
adantr |
|- ( ( P e. Prime /\ A e. ZZ ) -> P e. RR+ ) |
30 |
29
|
adantr |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> P e. RR+ ) |
31 |
|
modmulmod |
|- ( ( A e. RR /\ ( ( A ^ ( P - 2 ) ) mod P ) e. ZZ /\ P e. RR+ ) -> ( ( ( A mod P ) x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) ) |
32 |
17 27 30 31
|
syl3anc |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( ( A mod P ) x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) ) |
33 |
19 21
|
syl |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( A ^ ( P - 2 ) ) e. ZZ ) |
34 |
33 24
|
zmodcld |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( ( A ^ ( P - 2 ) ) mod P ) e. NN0 ) |
35 |
34
|
nn0cnd |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( ( A ^ ( P - 2 ) ) mod P ) e. CC ) |
36 |
35
|
mulid2d |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( 1 x. ( ( A ^ ( P - 2 ) ) mod P ) ) = ( ( A ^ ( P - 2 ) ) mod P ) ) |
37 |
36
|
oveq1d |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( ( 1 x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( ( A ^ ( P - 2 ) ) mod P ) mod P ) ) |
38 |
37
|
adantr |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( 1 x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( ( A ^ ( P - 2 ) ) mod P ) mod P ) ) |
39 |
|
reexpcl |
|- ( ( A e. RR /\ ( P - 2 ) e. NN0 ) -> ( A ^ ( P - 2 ) ) e. RR ) |
40 |
16 18 39
|
syl2anr |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( A ^ ( P - 2 ) ) e. RR ) |
41 |
40 29
|
jca |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( ( A ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) ) |
42 |
41
|
adantr |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( A ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) ) |
43 |
|
modabs2 |
|- ( ( ( A ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) -> ( ( ( A ^ ( P - 2 ) ) mod P ) mod P ) = ( ( A ^ ( P - 2 ) ) mod P ) ) |
44 |
42 43
|
syl |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( ( A ^ ( P - 2 ) ) mod P ) mod P ) = ( ( A ^ ( P - 2 ) ) mod P ) ) |
45 |
38 44
|
eqtrd |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( 1 x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( A ^ ( P - 2 ) ) mod P ) ) |
46 |
15 32 45
|
3eqtr3d |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( A ^ ( P - 2 ) ) mod P ) ) |
47 |
11 46
|
eqtr2d |
|- ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( A ^ ( P - 2 ) ) mod P ) = 1 ) |
48 |
47
|
ex |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A - 1 ) -> ( ( A ^ ( P - 2 ) ) mod P ) = 1 ) ) |