Description: Inference form of ppinprm . (Contributed by Mario Carneiro, 21-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ppi1i.m | |- M e. NN0 |
|
ppi1i.n | |- N = ( M + 1 ) |
||
ppi1i.p | |- ( ppi ` M ) = K |
||
ppi2i.1 | |- -. N e. Prime |
||
Assertion | ppi2i | |- ( ppi ` N ) = K |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ppi1i.m | |- M e. NN0 |
|
2 | ppi1i.n | |- N = ( M + 1 ) |
|
3 | ppi1i.p | |- ( ppi ` M ) = K |
|
4 | ppi2i.1 | |- -. N e. Prime |
|
5 | 2 | fveq2i | |- ( ppi ` N ) = ( ppi ` ( M + 1 ) ) |
6 | 1 | nn0zi | |- M e. ZZ |
7 | 2 | eleq1i | |- ( N e. Prime <-> ( M + 1 ) e. Prime ) |
8 | 4 7 | mtbi | |- -. ( M + 1 ) e. Prime |
9 | ppinprm | |- ( ( M e. ZZ /\ -. ( M + 1 ) e. Prime ) -> ( ppi ` ( M + 1 ) ) = ( ppi ` M ) ) |
|
10 | 6 8 9 | mp2an | |- ( ppi ` ( M + 1 ) ) = ( ppi ` M ) |
11 | 5 10 3 | 3eqtri | |- ( ppi ` N ) = K |