Metamath Proof Explorer


Theorem ppi3

Description: The prime-counting function ppi at 3 . (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion ppi3
|- ( ppi ` 3 ) = 2

Proof

Step Hyp Ref Expression
1 2nn0
 |-  2 e. NN0
2 df-3
 |-  3 = ( 2 + 1 )
3 ppi2
 |-  ( ppi ` 2 ) = 1
4 3prm
 |-  3 e. Prime
5 1 2 3 4 ppi1i
 |-  ( ppi ` 3 ) = ( 1 + 1 )
6 df-2
 |-  2 = ( 1 + 1 )
7 5 6 eqtr4i
 |-  ( ppi ` 3 ) = 2