Metamath Proof Explorer


Theorem ppif

Description: Domain and range of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion ppif
|- ppi : RR --> NN0

Proof

Step Hyp Ref Expression
1 df-ppi
 |-  ppi = ( x e. RR |-> ( # ` ( ( 0 [,] x ) i^i Prime ) ) )
2 ppifi
 |-  ( x e. RR -> ( ( 0 [,] x ) i^i Prime ) e. Fin )
3 hashcl
 |-  ( ( ( 0 [,] x ) i^i Prime ) e. Fin -> ( # ` ( ( 0 [,] x ) i^i Prime ) ) e. NN0 )
4 2 3 syl
 |-  ( x e. RR -> ( # ` ( ( 0 [,] x ) i^i Prime ) ) e. NN0 )
5 1 4 fmpti
 |-  ppi : RR --> NN0