Step |
Hyp |
Ref |
Expression |
1 |
|
ppisval |
|- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
2 |
1
|
fveq2d |
|- ( A e. RR -> ( # ` ( ( 0 [,] A ) i^i Prime ) ) = ( # ` ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) ) |
3 |
|
ppival |
|- ( A e. RR -> ( ppi ` A ) = ( # ` ( ( 0 [,] A ) i^i Prime ) ) ) |
4 |
|
flcl |
|- ( A e. RR -> ( |_ ` A ) e. ZZ ) |
5 |
|
ppival2 |
|- ( ( |_ ` A ) e. ZZ -> ( ppi ` ( |_ ` A ) ) = ( # ` ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) ) |
6 |
4 5
|
syl |
|- ( A e. RR -> ( ppi ` ( |_ ` A ) ) = ( # ` ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) ) |
7 |
2 3 6
|
3eqtr4rd |
|- ( A e. RR -> ( ppi ` ( |_ ` A ) ) = ( ppi ` A ) ) |