Step |
Hyp |
Ref |
Expression |
1 |
|
ppicl |
|- ( A e. RR -> ( ppi ` A ) e. NN0 ) |
2 |
1
|
adantr |
|- ( ( A e. RR /\ 2 <_ A ) -> ( ppi ` A ) e. NN0 ) |
3 |
2
|
nn0zd |
|- ( ( A e. RR /\ 2 <_ A ) -> ( ppi ` A ) e. ZZ ) |
4 |
|
ppi2 |
|- ( ppi ` 2 ) = 1 |
5 |
|
2re |
|- 2 e. RR |
6 |
|
ppiwordi |
|- ( ( 2 e. RR /\ A e. RR /\ 2 <_ A ) -> ( ppi ` 2 ) <_ ( ppi ` A ) ) |
7 |
5 6
|
mp3an1 |
|- ( ( A e. RR /\ 2 <_ A ) -> ( ppi ` 2 ) <_ ( ppi ` A ) ) |
8 |
4 7
|
eqbrtrrid |
|- ( ( A e. RR /\ 2 <_ A ) -> 1 <_ ( ppi ` A ) ) |
9 |
|
elnnz1 |
|- ( ( ppi ` A ) e. NN <-> ( ( ppi ` A ) e. ZZ /\ 1 <_ ( ppi ` A ) ) ) |
10 |
3 8 9
|
sylanbrc |
|- ( ( A e. RR /\ 2 <_ A ) -> ( ppi ` A ) e. NN ) |