Step |
Hyp |
Ref |
Expression |
1 |
|
ppiublem1.1 |
|- ( N <_ 6 /\ ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( N ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
2 |
|
ppiublem1.2 |
|- M e. NN0 |
3 |
|
ppiublem1.3 |
|- N = ( M + 1 ) |
4 |
|
ppiublem1.4 |
|- ( 2 || M \/ 3 || M \/ M e. { 1 , 5 } ) |
5 |
1
|
simpli |
|- N <_ 6 |
6 |
|
df-6 |
|- 6 = ( 5 + 1 ) |
7 |
5 3 6
|
3brtr3i |
|- ( M + 1 ) <_ ( 5 + 1 ) |
8 |
2
|
nn0rei |
|- M e. RR |
9 |
|
5re |
|- 5 e. RR |
10 |
|
1re |
|- 1 e. RR |
11 |
8 9 10
|
leadd1i |
|- ( M <_ 5 <-> ( M + 1 ) <_ ( 5 + 1 ) ) |
12 |
7 11
|
mpbir |
|- M <_ 5 |
13 |
|
6re |
|- 6 e. RR |
14 |
|
5lt6 |
|- 5 < 6 |
15 |
9 13 14
|
ltleii |
|- 5 <_ 6 |
16 |
8 9 13
|
letri |
|- ( ( M <_ 5 /\ 5 <_ 6 ) -> M <_ 6 ) |
17 |
12 15 16
|
mp2an |
|- M <_ 6 |
18 |
2
|
nn0zi |
|- M e. ZZ |
19 |
|
5nn |
|- 5 e. NN |
20 |
19
|
nnzi |
|- 5 e. ZZ |
21 |
|
eluz2 |
|- ( 5 e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ 5 e. ZZ /\ M <_ 5 ) ) |
22 |
18 20 12 21
|
mpbir3an |
|- 5 e. ( ZZ>= ` M ) |
23 |
|
elfzp12 |
|- ( 5 e. ( ZZ>= ` M ) -> ( ( P mod 6 ) e. ( M ... 5 ) <-> ( ( P mod 6 ) = M \/ ( P mod 6 ) e. ( ( M + 1 ) ... 5 ) ) ) ) |
24 |
22 23
|
ax-mp |
|- ( ( P mod 6 ) e. ( M ... 5 ) <-> ( ( P mod 6 ) = M \/ ( P mod 6 ) e. ( ( M + 1 ) ... 5 ) ) ) |
25 |
|
2nn |
|- 2 e. NN |
26 |
|
6nn |
|- 6 e. NN |
27 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
28 |
27
|
adantr |
|- ( ( P e. Prime /\ 4 <_ P ) -> P e. ZZ ) |
29 |
|
3z |
|- 3 e. ZZ |
30 |
|
2z |
|- 2 e. ZZ |
31 |
|
dvdsmul2 |
|- ( ( 3 e. ZZ /\ 2 e. ZZ ) -> 2 || ( 3 x. 2 ) ) |
32 |
29 30 31
|
mp2an |
|- 2 || ( 3 x. 2 ) |
33 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
34 |
32 33
|
breqtri |
|- 2 || 6 |
35 |
|
dvdsmod |
|- ( ( ( 2 e. NN /\ 6 e. NN /\ P e. ZZ ) /\ 2 || 6 ) -> ( 2 || ( P mod 6 ) <-> 2 || P ) ) |
36 |
34 35
|
mpan2 |
|- ( ( 2 e. NN /\ 6 e. NN /\ P e. ZZ ) -> ( 2 || ( P mod 6 ) <-> 2 || P ) ) |
37 |
25 26 28 36
|
mp3an12i |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 2 || ( P mod 6 ) <-> 2 || P ) ) |
38 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
39 |
30 38
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
40 |
|
simpl |
|- ( ( P e. Prime /\ 4 <_ P ) -> P e. Prime ) |
41 |
|
dvdsprm |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( 2 || P <-> 2 = P ) ) |
42 |
39 40 41
|
sylancr |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 2 || P <-> 2 = P ) ) |
43 |
37 42
|
bitrd |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 2 || ( P mod 6 ) <-> 2 = P ) ) |
44 |
|
simpr |
|- ( ( P e. Prime /\ 4 <_ P ) -> 4 <_ P ) |
45 |
|
breq2 |
|- ( 2 = P -> ( 4 <_ 2 <-> 4 <_ P ) ) |
46 |
44 45
|
syl5ibrcom |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 2 = P -> 4 <_ 2 ) ) |
47 |
|
2lt4 |
|- 2 < 4 |
48 |
|
2re |
|- 2 e. RR |
49 |
|
4re |
|- 4 e. RR |
50 |
48 49
|
ltnlei |
|- ( 2 < 4 <-> -. 4 <_ 2 ) |
51 |
47 50
|
mpbi |
|- -. 4 <_ 2 |
52 |
51
|
pm2.21i |
|- ( 4 <_ 2 -> ( P mod 6 ) e. { 1 , 5 } ) |
53 |
46 52
|
syl6 |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 2 = P -> ( P mod 6 ) e. { 1 , 5 } ) ) |
54 |
43 53
|
sylbid |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 2 || ( P mod 6 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) |
55 |
|
breq2 |
|- ( ( P mod 6 ) = M -> ( 2 || ( P mod 6 ) <-> 2 || M ) ) |
56 |
55
|
imbi1d |
|- ( ( P mod 6 ) = M -> ( ( 2 || ( P mod 6 ) -> ( P mod 6 ) e. { 1 , 5 } ) <-> ( 2 || M -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
57 |
54 56
|
syl5ibcom |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) = M -> ( 2 || M -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
58 |
57
|
com3r |
|- ( 2 || M -> ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) = M -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
59 |
|
3nn |
|- 3 e. NN |
60 |
|
dvdsmul1 |
|- ( ( 3 e. ZZ /\ 2 e. ZZ ) -> 3 || ( 3 x. 2 ) ) |
61 |
29 30 60
|
mp2an |
|- 3 || ( 3 x. 2 ) |
62 |
61 33
|
breqtri |
|- 3 || 6 |
63 |
|
dvdsmod |
|- ( ( ( 3 e. NN /\ 6 e. NN /\ P e. ZZ ) /\ 3 || 6 ) -> ( 3 || ( P mod 6 ) <-> 3 || P ) ) |
64 |
62 63
|
mpan2 |
|- ( ( 3 e. NN /\ 6 e. NN /\ P e. ZZ ) -> ( 3 || ( P mod 6 ) <-> 3 || P ) ) |
65 |
59 26 28 64
|
mp3an12i |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 3 || ( P mod 6 ) <-> 3 || P ) ) |
66 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
67 |
|
peano2uz |
|- ( 2 e. ( ZZ>= ` 2 ) -> ( 2 + 1 ) e. ( ZZ>= ` 2 ) ) |
68 |
39 67
|
ax-mp |
|- ( 2 + 1 ) e. ( ZZ>= ` 2 ) |
69 |
66 68
|
eqeltri |
|- 3 e. ( ZZ>= ` 2 ) |
70 |
|
dvdsprm |
|- ( ( 3 e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( 3 || P <-> 3 = P ) ) |
71 |
69 40 70
|
sylancr |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 3 || P <-> 3 = P ) ) |
72 |
65 71
|
bitrd |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 3 || ( P mod 6 ) <-> 3 = P ) ) |
73 |
|
breq2 |
|- ( 3 = P -> ( 4 <_ 3 <-> 4 <_ P ) ) |
74 |
44 73
|
syl5ibrcom |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 3 = P -> 4 <_ 3 ) ) |
75 |
|
3lt4 |
|- 3 < 4 |
76 |
|
3re |
|- 3 e. RR |
77 |
76 49
|
ltnlei |
|- ( 3 < 4 <-> -. 4 <_ 3 ) |
78 |
75 77
|
mpbi |
|- -. 4 <_ 3 |
79 |
78
|
pm2.21i |
|- ( 4 <_ 3 -> ( P mod 6 ) e. { 1 , 5 } ) |
80 |
74 79
|
syl6 |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 3 = P -> ( P mod 6 ) e. { 1 , 5 } ) ) |
81 |
72 80
|
sylbid |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 3 || ( P mod 6 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) |
82 |
|
breq2 |
|- ( ( P mod 6 ) = M -> ( 3 || ( P mod 6 ) <-> 3 || M ) ) |
83 |
82
|
imbi1d |
|- ( ( P mod 6 ) = M -> ( ( 3 || ( P mod 6 ) -> ( P mod 6 ) e. { 1 , 5 } ) <-> ( 3 || M -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
84 |
81 83
|
syl5ibcom |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) = M -> ( 3 || M -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
85 |
84
|
com3r |
|- ( 3 || M -> ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) = M -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
86 |
|
eleq1a |
|- ( M e. { 1 , 5 } -> ( ( P mod 6 ) = M -> ( P mod 6 ) e. { 1 , 5 } ) ) |
87 |
86
|
a1d |
|- ( M e. { 1 , 5 } -> ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) = M -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
88 |
58 85 87
|
3jaoi |
|- ( ( 2 || M \/ 3 || M \/ M e. { 1 , 5 } ) -> ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) = M -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
89 |
4 88
|
ax-mp |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) = M -> ( P mod 6 ) e. { 1 , 5 } ) ) |
90 |
3
|
oveq1i |
|- ( N ... 5 ) = ( ( M + 1 ) ... 5 ) |
91 |
90
|
eleq2i |
|- ( ( P mod 6 ) e. ( N ... 5 ) <-> ( P mod 6 ) e. ( ( M + 1 ) ... 5 ) ) |
92 |
1
|
simpri |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( N ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) |
93 |
91 92
|
syl5bir |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( ( M + 1 ) ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) |
94 |
89 93
|
jaod |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( ( ( P mod 6 ) = M \/ ( P mod 6 ) e. ( ( M + 1 ) ... 5 ) ) -> ( P mod 6 ) e. { 1 , 5 } ) ) |
95 |
24 94
|
syl5bi |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( M ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) |
96 |
17 95
|
pm3.2i |
|- ( M <_ 6 /\ ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( M ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |