Step |
Hyp |
Ref |
Expression |
1 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
2 |
1
|
adantr |
|- ( ( P e. Prime /\ 4 <_ P ) -> P e. ZZ ) |
3 |
|
6nn |
|- 6 e. NN |
4 |
|
zmodfz |
|- ( ( P e. ZZ /\ 6 e. NN ) -> ( P mod 6 ) e. ( 0 ... ( 6 - 1 ) ) ) |
5 |
2 3 4
|
sylancl |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( P mod 6 ) e. ( 0 ... ( 6 - 1 ) ) ) |
6 |
|
6m1e5 |
|- ( 6 - 1 ) = 5 |
7 |
6
|
oveq2i |
|- ( 0 ... ( 6 - 1 ) ) = ( 0 ... 5 ) |
8 |
5 7
|
eleqtrdi |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( P mod 6 ) e. ( 0 ... 5 ) ) |
9 |
|
6re |
|- 6 e. RR |
10 |
9
|
leidi |
|- 6 <_ 6 |
11 |
|
noel |
|- -. ( P mod 6 ) e. (/) |
12 |
11
|
pm2.21i |
|- ( ( P mod 6 ) e. (/) -> ( P mod 6 ) e. { 1 , 5 } ) |
13 |
|
5lt6 |
|- 5 < 6 |
14 |
3
|
nnzi |
|- 6 e. ZZ |
15 |
|
5nn |
|- 5 e. NN |
16 |
15
|
nnzi |
|- 5 e. ZZ |
17 |
|
fzn |
|- ( ( 6 e. ZZ /\ 5 e. ZZ ) -> ( 5 < 6 <-> ( 6 ... 5 ) = (/) ) ) |
18 |
14 16 17
|
mp2an |
|- ( 5 < 6 <-> ( 6 ... 5 ) = (/) ) |
19 |
13 18
|
mpbi |
|- ( 6 ... 5 ) = (/) |
20 |
12 19
|
eleq2s |
|- ( ( P mod 6 ) e. ( 6 ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) |
21 |
20
|
a1i |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( 6 ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) |
22 |
10 21
|
pm3.2i |
|- ( 6 <_ 6 /\ ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( 6 ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
23 |
|
5nn0 |
|- 5 e. NN0 |
24 |
|
df-6 |
|- 6 = ( 5 + 1 ) |
25 |
15
|
elexi |
|- 5 e. _V |
26 |
25
|
prid2 |
|- 5 e. { 1 , 5 } |
27 |
26
|
3mix3i |
|- ( 2 || 5 \/ 3 || 5 \/ 5 e. { 1 , 5 } ) |
28 |
22 23 24 27
|
ppiublem1 |
|- ( 5 <_ 6 /\ ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( 5 ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
29 |
|
4nn0 |
|- 4 e. NN0 |
30 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
31 |
|
z4even |
|- 2 || 4 |
32 |
31
|
3mix1i |
|- ( 2 || 4 \/ 3 || 4 \/ 4 e. { 1 , 5 } ) |
33 |
28 29 30 32
|
ppiublem1 |
|- ( 4 <_ 6 /\ ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( 4 ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
34 |
|
3nn0 |
|- 3 e. NN0 |
35 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
36 |
|
3z |
|- 3 e. ZZ |
37 |
|
iddvds |
|- ( 3 e. ZZ -> 3 || 3 ) |
38 |
36 37
|
ax-mp |
|- 3 || 3 |
39 |
38
|
3mix2i |
|- ( 2 || 3 \/ 3 || 3 \/ 3 e. { 1 , 5 } ) |
40 |
33 34 35 39
|
ppiublem1 |
|- ( 3 <_ 6 /\ ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( 3 ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
41 |
|
2nn0 |
|- 2 e. NN0 |
42 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
43 |
|
z2even |
|- 2 || 2 |
44 |
43
|
3mix1i |
|- ( 2 || 2 \/ 3 || 2 \/ 2 e. { 1 , 5 } ) |
45 |
40 41 42 44
|
ppiublem1 |
|- ( 2 <_ 6 /\ ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( 2 ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
46 |
|
1nn0 |
|- 1 e. NN0 |
47 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
48 |
|
1ex |
|- 1 e. _V |
49 |
48
|
prid1 |
|- 1 e. { 1 , 5 } |
50 |
49
|
3mix3i |
|- ( 2 || 1 \/ 3 || 1 \/ 1 e. { 1 , 5 } ) |
51 |
45 46 47 50
|
ppiublem1 |
|- ( 1 <_ 6 /\ ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( 1 ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
52 |
|
0nn0 |
|- 0 e. NN0 |
53 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
54 |
|
z0even |
|- 2 || 0 |
55 |
54
|
3mix1i |
|- ( 2 || 0 \/ 3 || 0 \/ 0 e. { 1 , 5 } ) |
56 |
51 52 53 55
|
ppiublem1 |
|- ( 0 <_ 6 /\ ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( 0 ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
57 |
56
|
simpri |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( 0 ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) |
58 |
8 57
|
mpd |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( P mod 6 ) e. { 1 , 5 } ) |