Metamath Proof Explorer


Theorem ppival

Description: Value of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion ppival
|- ( A e. RR -> ( ppi ` A ) = ( # ` ( ( 0 [,] A ) i^i Prime ) ) )

Proof

Step Hyp Ref Expression
1 oveq2
 |-  ( x = A -> ( 0 [,] x ) = ( 0 [,] A ) )
2 1 ineq1d
 |-  ( x = A -> ( ( 0 [,] x ) i^i Prime ) = ( ( 0 [,] A ) i^i Prime ) )
3 2 fveq2d
 |-  ( x = A -> ( # ` ( ( 0 [,] x ) i^i Prime ) ) = ( # ` ( ( 0 [,] A ) i^i Prime ) ) )
4 df-ppi
 |-  ppi = ( x e. RR |-> ( # ` ( ( 0 [,] x ) i^i Prime ) ) )
5 fvex
 |-  ( # ` ( ( 0 [,] A ) i^i Prime ) ) e. _V
6 3 4 5 fvmpt
 |-  ( A e. RR -> ( ppi ` A ) = ( # ` ( ( 0 [,] A ) i^i Prime ) ) )