Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
2 |
|
ppival |
|- ( A e. RR -> ( ppi ` A ) = ( # ` ( ( 0 [,] A ) i^i Prime ) ) ) |
3 |
1 2
|
syl |
|- ( A e. ZZ -> ( ppi ` A ) = ( # ` ( ( 0 [,] A ) i^i Prime ) ) ) |
4 |
|
ppisval |
|- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
5 |
1 4
|
syl |
|- ( A e. ZZ -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
6 |
|
flid |
|- ( A e. ZZ -> ( |_ ` A ) = A ) |
7 |
6
|
oveq2d |
|- ( A e. ZZ -> ( 2 ... ( |_ ` A ) ) = ( 2 ... A ) ) |
8 |
7
|
ineq1d |
|- ( A e. ZZ -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) = ( ( 2 ... A ) i^i Prime ) ) |
9 |
5 8
|
eqtrd |
|- ( A e. ZZ -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... A ) i^i Prime ) ) |
10 |
9
|
fveq2d |
|- ( A e. ZZ -> ( # ` ( ( 0 [,] A ) i^i Prime ) ) = ( # ` ( ( 2 ... A ) i^i Prime ) ) ) |
11 |
3 10
|
eqtrd |
|- ( A e. ZZ -> ( ppi ` A ) = ( # ` ( ( 2 ... A ) i^i Prime ) ) ) |