Step |
Hyp |
Ref |
Expression |
1 |
|
addcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
2 |
1
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + B ) = ( B + A ) ) |
3 |
2
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - ( B - C ) ) = ( ( B + A ) - ( B - C ) ) ) |
4 |
|
addcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
5 |
4
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + B ) e. CC ) |
6 |
|
subsub2 |
|- ( ( ( A + B ) e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - ( B - C ) ) = ( ( A + B ) + ( C - B ) ) ) |
7 |
5 6
|
syld3an1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - ( B - C ) ) = ( ( A + B ) + ( C - B ) ) ) |
8 |
|
pnncan |
|- ( ( B e. CC /\ A e. CC /\ C e. CC ) -> ( ( B + A ) - ( B - C ) ) = ( A + C ) ) |
9 |
8
|
3com12 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B + A ) - ( B - C ) ) = ( A + C ) ) |
10 |
3 7 9
|
3eqtr3d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + ( C - B ) ) = ( A + C ) ) |