Step |
Hyp |
Ref |
Expression |
1 |
|
snnen2o |
|- -. { A } ~~ 2o |
2 |
|
dfsn2 |
|- { A } = { A , A } |
3 |
|
preq2 |
|- ( A = B -> { A , A } = { A , B } ) |
4 |
2 3
|
eqtr2id |
|- ( A = B -> { A , B } = { A } ) |
5 |
4
|
breq1d |
|- ( A = B -> ( { A , B } ~~ 2o <-> { A } ~~ 2o ) ) |
6 |
1 5
|
mtbiri |
|- ( A = B -> -. { A , B } ~~ 2o ) |
7 |
6
|
necon2ai |
|- ( { A , B } ~~ 2o -> A =/= B ) |
8 |
|
enpr2 |
|- ( ( A e. C /\ B e. D /\ A =/= B ) -> { A , B } ~~ 2o ) |
9 |
8
|
3expia |
|- ( ( A e. C /\ B e. D ) -> ( A =/= B -> { A , B } ~~ 2o ) ) |
10 |
7 9
|
impbid2 |
|- ( ( A e. C /\ B e. D ) -> ( { A , B } ~~ 2o <-> A =/= B ) ) |