Step |
Hyp |
Ref |
Expression |
1 |
|
preq2 |
|- ( B = A -> { A , B } = { A , A } ) |
2 |
1
|
eqcoms |
|- ( A = B -> { A , B } = { A , A } ) |
3 |
|
enpr1g |
|- ( A e. C -> { A , A } ~~ 1o ) |
4 |
|
entr |
|- ( ( { A , B } ~~ { A , A } /\ { A , A } ~~ 1o ) -> { A , B } ~~ 1o ) |
5 |
|
1sdom2 |
|- 1o ~< 2o |
6 |
|
sdomnen |
|- ( 1o ~< 2o -> -. 1o ~~ 2o ) |
7 |
5 6
|
ax-mp |
|- -. 1o ~~ 2o |
8 |
|
ensym |
|- ( { A , B } ~~ 1o -> 1o ~~ { A , B } ) |
9 |
|
entr |
|- ( ( 1o ~~ { A , B } /\ { A , B } ~~ 2o ) -> 1o ~~ 2o ) |
10 |
9
|
ex |
|- ( 1o ~~ { A , B } -> ( { A , B } ~~ 2o -> 1o ~~ 2o ) ) |
11 |
8 10
|
syl |
|- ( { A , B } ~~ 1o -> ( { A , B } ~~ 2o -> 1o ~~ 2o ) ) |
12 |
7 11
|
mtoi |
|- ( { A , B } ~~ 1o -> -. { A , B } ~~ 2o ) |
13 |
12
|
a1d |
|- ( { A , B } ~~ 1o -> ( ( A e. C /\ B e. D ) -> -. { A , B } ~~ 2o ) ) |
14 |
4 13
|
syl |
|- ( ( { A , B } ~~ { A , A } /\ { A , A } ~~ 1o ) -> ( ( A e. C /\ B e. D ) -> -. { A , B } ~~ 2o ) ) |
15 |
14
|
ex |
|- ( { A , B } ~~ { A , A } -> ( { A , A } ~~ 1o -> ( ( A e. C /\ B e. D ) -> -. { A , B } ~~ 2o ) ) ) |
16 |
|
prex |
|- { A , B } e. _V |
17 |
|
eqeng |
|- ( { A , B } e. _V -> ( { A , B } = { A , A } -> { A , B } ~~ { A , A } ) ) |
18 |
16 17
|
ax-mp |
|- ( { A , B } = { A , A } -> { A , B } ~~ { A , A } ) |
19 |
15 18
|
syl11 |
|- ( { A , A } ~~ 1o -> ( { A , B } = { A , A } -> ( ( A e. C /\ B e. D ) -> -. { A , B } ~~ 2o ) ) ) |
20 |
19
|
a1dd |
|- ( { A , A } ~~ 1o -> ( { A , B } = { A , A } -> ( B e. D -> ( ( A e. C /\ B e. D ) -> -. { A , B } ~~ 2o ) ) ) ) |
21 |
3 20
|
syl |
|- ( A e. C -> ( { A , B } = { A , A } -> ( B e. D -> ( ( A e. C /\ B e. D ) -> -. { A , B } ~~ 2o ) ) ) ) |
22 |
21
|
com23 |
|- ( A e. C -> ( B e. D -> ( { A , B } = { A , A } -> ( ( A e. C /\ B e. D ) -> -. { A , B } ~~ 2o ) ) ) ) |
23 |
22
|
imp |
|- ( ( A e. C /\ B e. D ) -> ( { A , B } = { A , A } -> ( ( A e. C /\ B e. D ) -> -. { A , B } ~~ 2o ) ) ) |
24 |
23
|
pm2.43a |
|- ( ( A e. C /\ B e. D ) -> ( { A , B } = { A , A } -> -. { A , B } ~~ 2o ) ) |
25 |
2 24
|
syl5 |
|- ( ( A e. C /\ B e. D ) -> ( A = B -> -. { A , B } ~~ 2o ) ) |
26 |
25
|
necon2ad |
|- ( ( A e. C /\ B e. D ) -> ( { A , B } ~~ 2o -> A =/= B ) ) |
27 |
|
pr2nelem |
|- ( ( A e. C /\ B e. D /\ A =/= B ) -> { A , B } ~~ 2o ) |
28 |
27
|
3expia |
|- ( ( A e. C /\ B e. D ) -> ( A =/= B -> { A , B } ~~ 2o ) ) |
29 |
26 28
|
impbid |
|- ( ( A e. C /\ B e. D ) -> ( { A , B } ~~ 2o <-> A =/= B ) ) |