Metamath Proof Explorer


Theorem pr2ne

Description: If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010)

Ref Expression
Assertion pr2ne
|- ( ( A e. C /\ B e. D ) -> ( { A , B } ~~ 2o <-> A =/= B ) )

Proof

Step Hyp Ref Expression
1 preq2
 |-  ( B = A -> { A , B } = { A , A } )
2 1 eqcoms
 |-  ( A = B -> { A , B } = { A , A } )
3 enpr1g
 |-  ( A e. C -> { A , A } ~~ 1o )
4 entr
 |-  ( ( { A , B } ~~ { A , A } /\ { A , A } ~~ 1o ) -> { A , B } ~~ 1o )
5 1sdom2
 |-  1o ~< 2o
6 sdomnen
 |-  ( 1o ~< 2o -> -. 1o ~~ 2o )
7 5 6 ax-mp
 |-  -. 1o ~~ 2o
8 ensym
 |-  ( { A , B } ~~ 1o -> 1o ~~ { A , B } )
9 entr
 |-  ( ( 1o ~~ { A , B } /\ { A , B } ~~ 2o ) -> 1o ~~ 2o )
10 9 ex
 |-  ( 1o ~~ { A , B } -> ( { A , B } ~~ 2o -> 1o ~~ 2o ) )
11 8 10 syl
 |-  ( { A , B } ~~ 1o -> ( { A , B } ~~ 2o -> 1o ~~ 2o ) )
12 7 11 mtoi
 |-  ( { A , B } ~~ 1o -> -. { A , B } ~~ 2o )
13 12 a1d
 |-  ( { A , B } ~~ 1o -> ( ( A e. C /\ B e. D ) -> -. { A , B } ~~ 2o ) )
14 4 13 syl
 |-  ( ( { A , B } ~~ { A , A } /\ { A , A } ~~ 1o ) -> ( ( A e. C /\ B e. D ) -> -. { A , B } ~~ 2o ) )
15 14 ex
 |-  ( { A , B } ~~ { A , A } -> ( { A , A } ~~ 1o -> ( ( A e. C /\ B e. D ) -> -. { A , B } ~~ 2o ) ) )
16 prex
 |-  { A , B } e. _V
17 eqeng
 |-  ( { A , B } e. _V -> ( { A , B } = { A , A } -> { A , B } ~~ { A , A } ) )
18 16 17 ax-mp
 |-  ( { A , B } = { A , A } -> { A , B } ~~ { A , A } )
19 15 18 syl11
 |-  ( { A , A } ~~ 1o -> ( { A , B } = { A , A } -> ( ( A e. C /\ B e. D ) -> -. { A , B } ~~ 2o ) ) )
20 19 a1dd
 |-  ( { A , A } ~~ 1o -> ( { A , B } = { A , A } -> ( B e. D -> ( ( A e. C /\ B e. D ) -> -. { A , B } ~~ 2o ) ) ) )
21 3 20 syl
 |-  ( A e. C -> ( { A , B } = { A , A } -> ( B e. D -> ( ( A e. C /\ B e. D ) -> -. { A , B } ~~ 2o ) ) ) )
22 21 com23
 |-  ( A e. C -> ( B e. D -> ( { A , B } = { A , A } -> ( ( A e. C /\ B e. D ) -> -. { A , B } ~~ 2o ) ) ) )
23 22 imp
 |-  ( ( A e. C /\ B e. D ) -> ( { A , B } = { A , A } -> ( ( A e. C /\ B e. D ) -> -. { A , B } ~~ 2o ) ) )
24 23 pm2.43a
 |-  ( ( A e. C /\ B e. D ) -> ( { A , B } = { A , A } -> -. { A , B } ~~ 2o ) )
25 2 24 syl5
 |-  ( ( A e. C /\ B e. D ) -> ( A = B -> -. { A , B } ~~ 2o ) )
26 25 necon2ad
 |-  ( ( A e. C /\ B e. D ) -> ( { A , B } ~~ 2o -> A =/= B ) )
27 pr2nelem
 |-  ( ( A e. C /\ B e. D /\ A =/= B ) -> { A , B } ~~ 2o )
28 27 3expia
 |-  ( ( A e. C /\ B e. D ) -> ( A =/= B -> { A , B } ~~ 2o ) )
29 26 28 impbid
 |-  ( ( A e. C /\ B e. D ) -> ( { A , B } ~~ 2o <-> A =/= B ) )