Metamath Proof Explorer


Theorem pr2nelem

Description: Lemma for pr2ne . (Contributed by FL, 17-Aug-2008)

Ref Expression
Assertion pr2nelem
|- ( ( A e. C /\ B e. D /\ A =/= B ) -> { A , B } ~~ 2o )

Proof

Step Hyp Ref Expression
1 disjsn2
 |-  ( A =/= B -> ( { A } i^i { B } ) = (/) )
2 ensn1g
 |-  ( A e. C -> { A } ~~ 1o )
3 ensn1g
 |-  ( B e. D -> { B } ~~ 1o )
4 pm54.43
 |-  ( ( { A } ~~ 1o /\ { B } ~~ 1o ) -> ( ( { A } i^i { B } ) = (/) <-> ( { A } u. { B } ) ~~ 2o ) )
5 df-pr
 |-  { A , B } = ( { A } u. { B } )
6 5 breq1i
 |-  ( { A , B } ~~ 2o <-> ( { A } u. { B } ) ~~ 2o )
7 4 6 bitr4di
 |-  ( ( { A } ~~ 1o /\ { B } ~~ 1o ) -> ( ( { A } i^i { B } ) = (/) <-> { A , B } ~~ 2o ) )
8 7 biimpd
 |-  ( ( { A } ~~ 1o /\ { B } ~~ 1o ) -> ( ( { A } i^i { B } ) = (/) -> { A , B } ~~ 2o ) )
9 2 3 8 syl2an
 |-  ( ( A e. C /\ B e. D ) -> ( ( { A } i^i { B } ) = (/) -> { A , B } ~~ 2o ) )
10 9 ex
 |-  ( A e. C -> ( B e. D -> ( ( { A } i^i { B } ) = (/) -> { A , B } ~~ 2o ) ) )
11 1 10 syl7
 |-  ( A e. C -> ( B e. D -> ( A =/= B -> { A , B } ~~ 2o ) ) )
12 11 3imp
 |-  ( ( A e. C /\ B e. D /\ A =/= B ) -> { A , B } ~~ 2o )